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A B S T R A C T   

Under mixed I-III loading, a crack frequently segments into several echelon-shaped daughter cracks rotated 
towards the direction of principal stress. This phenomenon is called crack front segmentation and has been 
widely observed at different length scales in both laboratory and nature. In this paper, based on the extended 
finite element method (XFEM), a three-dimensional numerical strategy is proposed, validated, and adopted to 
model quasi-static fracture propagation considering crack front segmentation. A new crack propagation criterion 
based on the weighted average principal stress in conjunction with a cubic spline curve fitting of front vertexes is 
introduced to update the crack geometry. Further, to get a higher resolution of the stress field around the crack 
front, a robust and efficient local mesh refinement scheme fully integrated with the XFEM is proposed. Besides, a 
partitioning scheme of enriched elements containing segmentation points is presented to achieve an accurate 
numerical integration. Several examples are presented to illustrate the effectiveness and robustness of the pro-
posed strategy. The hydraulic fracturing example indicates that ignoring fracture front segmentation for a mixed- 
mode I-III fluid-driven fracture will severely underestimate the injection pressure due to the stress shadow effects 
between adjacent overlapped segments.   

1. Introduction 

It has been well-known that, except under special circumstances, the 
crack front grows towards mode-I loading conditions no matter what the 
external loading is [1]. Under mixed-mode I-II loading conditions, the 
crack front kinks or curves to eliminate mode-II. Under mixed-mode I-III 
or I-II-III loading conditions, however, the problem turns to three- 
dimensional (3D), and the crack front twists and generally splits into 
an array of segments (as depicted in Fig. 1), and eventually achieves 
pure mode-I situations for each segment. This phenomenon is known as 
crack front segmentation [2–4] or crack front fragmentation [5,6], and 
the oriented segments are termed echelon cracks [5–7] or tilted facets 
[8–10]. Starting from the seminal works of Sommer [11] and Knauss 
[12], crack front segmentation has been observed at different length 
scales from millimeter [1] to kilometer [2,7] in both laboratory and 
nature [13] in various materials such as rocks [7,13–16], glass [11], 
polymers [1,9,12,17], metals [3], and jel [18], as typically shown in 
Fig. 2. This implies that the causes of segmentation are material- 
independent and size-independent. Hence, the classical linear elastic 

fracture mechanics (LEFM) in macroscale is capable of dealing with such 
problems [2,9,19]. The phenomenon of crack front segmentation is very 
complex. Experiments show that the occurrence of segmentation is 
related to the ratio of mode-III (KIII) to mode-I (KI) stress intensity factors 
(SIFs) [19] and some threshold values are proposed [10]. Yet in some 
other experiments [18,20], even an extremely low ratio of mode mixture 
can trigger segmentation. Besides, both experiments and phase-field 
simulation show that crack coarsening [9,21,22] happens during the 
further propagation process of echelon cracks, which further compli-
cates the problem. Fortunately, it has been observed in experiments 
[11,13,23,24] that the initially generated echelon cracks are in a 
perfectly periodic pattern, oriented with similar angles, separated by 
nearly an equal distance, and have almost the same size, just as illus-
trated in Fig. 1. 

Some theoretical work has been done to decipher when and how 
segmentation occurs in materials under mixed-mode loadings. For 
example, Cooke and Pollard [17] presented a simple model to determine 
the twist angle by assuming that the echelon crack grows within a plane 
perpendicular to the maximum principal stress. Lazarus et al. proposed a 
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model [25] to theoretically calculate SIFs along the crack front after 
growth over a small distance and established a criterion [26] to predict 
the crack front rotation rate. Lazarus et al. [1] then compared crack 
propagation paths predicted by several propagation criteria with 
experimental results. Wu et al. [22] established a 2D theoretical model 
to investigate the influence of interaction between adjacent echelon 
cracks based on observation of experimental results. Lin et al. [5] pro-
posed a crack front segmentation criterion and a theoretical model 
linking the fragment spacing and the twist angle. Within the framework 
of LEFM, Leblond et al. [27] derived the expressions of SIFs along the 
segmented crack front described by helices. Leblond and Frelat [28] 
deduced an expression of the twist angle over the ratio of KIII to KI after 
analytically obtaining solutions of a two-dimensional (2D) problem that 

contains an array of inclined cracks in an infinite plate under uniform 
loading at infinity. Although some achievements have been reached, it 
should be noted that a constant picture between theoretical predictions 
and experimental results has not been obtained yet [9]. Therefore, re-
searchers need to resort to numerical methods to deal efficiently with 
this kind of intricate problems. 

It is now well-known that, in practice, most 3D fracture problems in 
engineering are in mixed mode, and crack front segmentation constantly 
occurs as depicted in Fig. 2. However, due to the extreme complexity, 
researchers usually assume the integrality of the 3D crack surface and 
ignore the segmentation process of crack front in their numerical models 
[29–32], thus, to some extent, resulting in inaccurate or even unreliable 
simulation results. When it comes to the numerical simulation of prob-
lems concerning segmented crack front, the most widely used approach 
in recent years is the phase-field method [33]. For example, based on the 
phase-field method, Pons and Karma [21] observed that facets will 
gradually coarsen (i.e., facet coarsening) during crack-front evolution 
through large-scale simulations of mixed-mode fracture. Chen et al. [9] 
studied in detail the facet coarsening process by performing phase-field 
simulations, and found facet coarsening is driven by the instability of 
spatial period-doubling of facets during propagation. Henry [34] 
showed that irregular initial slits can result in front segmentation even 
for very small KIII/KI ratios as observed in experiments [22]. Pham and 
Ravi-Chandar [6] proposed a phase-field model of fracture and sug-
gested the introduction of initial defects around crack front to trigger the 
occurrence of crack front segmentation. However, although automatic 
tracking of crack front evolution with arbitrary complex geometries is a 
particularly attractive advantage of the phase-field method, an inherent 
drawback of this method limits its application to research purposes only, 
rather than practical engineering problems. As a key parameter in the 
phase-field method, the intrinsic length scale must be taken small 
enough [6] compared to the scale of echelon cracks in order to correctly 
capture the crack front segmentation process. As a result, the compu-
tational domain contains a huge number of elements or grid points (for 
example, millions of elements in [6] and up to 108 grid points in [21]) 
even for a microscale simulation that can only be performed using large- 

Fig. 1. Illustration of the segmented crack front under the action of mixed- 
mode I-III loading conditions. Five daughter cracks (or called echelon cracks 
or crack segments) parallel to each other were formed from the front of the flat 
parent crack and rotated towards the direction of principal stress [2]. 

Fig. 2. Crack front segmentation phenomenon observed in nature ((a) and (b)) and in laboratory ((c) - (f)). (a) Echelon cracks (upper part of the figure) and the 
parent crack (lower part of the figure) observed in a shale specimen [7]. (b) Natural echelon cracks photographed at Taughannock Falls State Park [13]. (c) 
Segmented hydraulic fracture formed from a horizontal wellbore in a block of hydrostone [14]. (d) Lance-shaped facets produced around the crack front of a cy-
lindrical bar made of glass loaded in both tension and a tiny amount of torsion [11]. (e) Facets observed in three points bending experiment of a plexiglass beam [9]. 
(f) Fractured surface of a CTSR (Compact Tension Shear Rotation)-specimen made of high-strength aluminium alloy [3]. 
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scale parallel computers [21]. 
In addition to the phase-field method, Huang et al. [35] reproduced 

the crack front segmentation phenomenon in 3D hydraulic fracture 
propagation simulations performed using the virtual internal bond (VIB) 
method. Meng and Pollard [36] modeled 3D crack propagation process 
in mixed-mode based on the boundary element method (BEM) and 
compared the crack surface evolutions with and without considering 
segmented crack front. Leblond and Lazarus et al. [10] proposed a 
multiscale cohesive-zone model derived in the context of LFEM by 
assuming that facet length is much bigger than its spacing. Recently, 
Lazarus et al. [8,37] improved their cohesive-zone model to handle 
more realistic cases and investigated toughening caused by facets. The 
finite element method (FEM) shows great flexibility in a variety of 
complicated problems. However, the FEM is not a versatile method to 
investigate the crack front fragmentation phenomenon in which the tip- 
line twists and fragments into echelon cracks (as shown in Fig. 1) due to 
the difficulty in meshing around the complex geometries. For example, 
Xu et al. [38] predicted unstable out-of-plane propagation under com-
bined mode I-III loading conditions using the FEM, but their model is 
incapable of allowing the crack front line to break into segments. In 
addition, Dhondt et al. [39] and Buchholz et al. [40] numerically 
analyzed three-point bending experiments of polymethyl methacrylate 
(PMMA) under mixed-mode loading conditions with no regard to frag-
mentation. More recently, Thomas et al. [32] simulated mixed-mode 
growth of fractures in arrays and networks using FEM, but also 
without considering crack front segmentation. 

The XFEM [41–43] was proposed by enriching the displacement- 
based approximation with additional basis functions and enriched de-
grees of freedom (DOFs) based on the partition of unity method [44]. 
Using the XFEM, the task of tedious remeshing of finite element mesh 
can be completely avoided, and thus it shows excellent applicability and 
high flexibility for a variety of practical problems in both 2D and 3D 
[30,45,46]. It must be mentioned that, within the framework of XFEM, 
the local mesh refinement can be performed in the vicinity of the crack 
to further improve the resolution of stress field. For example, Wang et al. 
[47] proposed a local mesh refinement scheme with variable-node 
transition hexahedral elements through which the mismatching 
element interfaces between different meshes can directly be converted 
into matching interfaces. It should be noted that a similar numerical 
approach based on the partition of unity theory, the generalized finite 
element method (GFEM) [46], has also been used as a versatile tool to 
study problems involving cracks of complex geometry. Pereira et al. [48] 
proposed a GFEM-based model and investigated the effects of mode-III 
SIF on crack propagation paths. They [48] found that a desired mode-I 
planar crack growth status cannot be reached at the end of a simula-
tion if neglecting mode-III effects in the adopted crack propagation 
criterion. Gupta and Duarte [29] studied the 3D non-planar and non- 
smooth propagation of fluid-driven cracks with a focus on the influ-
ence of in-situ stresses and pumping pressure on crack shape evolution 
using adaptive GFEM. Recently, Shi and Liu [30] proposed a fully- 
coupled model to investigate the hydraulic fracturing procedure of 3D 
non-planar fractures based on the XFEM and observed that mode-III SIF 
has a profound effect on crack propagation paths. In their study [30], 
Schöllmann’s criterion is adopted as the crack propagation criterion and 
they discussed the importance of fracture front segmentation in hy-
draulic fracturing simulation. Xiao et al. [49] established a numerical 
model in which the crack is explicitly described by a B-spline ruled 
surface to simulate arbitrary 3D crack propagation in the framework of 
XFEM. Besides, Mukhtar et al. [50] studied mixed-mode fracture prop-
agation in brittle materials using GFEM/XFEM in conjunction with the 
mesh adaptivity technique. Although some scholars have tried to 
investigate non-planar crack propagation problems under mixed loading 
conditions using the XFEM or GFEM, to our knowledge, relevant 
research that explicitly considers crack front segmentation has not been 
reported in the literature yet. 

The paper is arranged as follows. Methodology including a brief 

description of the XFEM and the crack propagation criterion are given in 
Section 2. Section 3 details modeling hypotheses and some imple-
mentation issues. Verification of the proposed numerical strategy and 
numerical examples including hydraulic fracturing simulation are pre-
sented in Section 4, followed by concluding remarks in Section 5. In this 
paper, we try for the first time to offer an XFEM-based numerical 
strategy to simulate echelon cracks formation while twisting along the 
crack front line. To efficiently achieve this objective, a new weighted 
average principal stress criterion (Section 2.2) along with a local mesh 
refinement algorithm (Section 3.1) and a curve fitting method of crack 
front vertexes (Section 3.2) is proposed. Besides, a scheme of parti-
tioning enriched elements containing segmentation points to achieve an 
accurate numerical integration is presented in Section 3.3. 

2. Methodology 

2.1. XFEM in linear elastic fracture mechanics 

Consider a 3D quasi-static crack inside a linear-elastic domain Ω with 
boundary Γ which is composed of four non-overlapping regions: Γu with 
imposed displacement u, Γt with externally enforced stress t, the crack 
surface Γc composed of Γ+

c and Γ−
c , and the rest region of Γ. Neglect body 

forces, the equilibrium equation and corresponding boundary condi-
tions read 
⎧
⎪⎪⎨

⎪⎪⎩

∇⋅σ = 0 in Ω
u = u on Γu
σ⋅nΓt = t on Γt
σ⋅nΓc = PnΓc on Γc

(1)  

where nΓt and nΓc represent the outwards normal vectors of boundary Γt 
and Γc, respectively; σ denotes the Cauchy stress tensor and is computed 
as 

σ = D : ε (2) 

In this equation, D represents the elasticity matrix of moduli, and ε is 
the strain tensor under small deformation theory assumptions. In Eq. (1), 
P denotes the fluid pressure inside the crack for the hydraulic fracturing 
simulation performed in Section 4.5; in other simulations, P equals 0. 

After finite element discretization of the domain Ω, we obtain: Sall, 
the set of all nodes; Sfrac, the set of nodes attached to elements 
completely cut by the crack surface (also known as Heaviside enriched 
nodes); and Stip, the set of nodes attached to elements intersected by 
crack front. Then, the displacement u of point x in Ω can be calculated 
by [43] 

u(x) =
∑

I∈Sall

Nu
I (x)uI +

∑

I∈Sfrac

Nu
I (x)H(x)aI +

∑

I∈Stip

Nu
I (x)

∑4

l=1
Fl(x)bl

I (3) 

In the above, uI is the vector of conventional displacement DOFs, aI 

and bl
I are vectors of additional displacement DOFs of node sets Sfrac and 

Stip, respectively. Nu
I is the classical C0 shape function. H(x) represents 

the Heaviside enrichment function and 

H(x) =
{

1 if (x − x∗)⋅nΓc ⩾0
− 1 otherwise (4)  

where x∗ denotes the nearest point on Γc to x. Besides, Fl(x) denote the 
tip enrichment functions (or branch functions). Define a local Cartesian 
coordinate system represented by (x, y, z) and a local cylindrical coor-
dinate system represented by (r, θ, z) along the crack front, as shown in 
Fig. 3. Both coordinate systems originate from the midpoint x′ of each 
crack front line segment and share the same z-axis defined along the 
crack front line segment. Besides, the y-axis coincides with nΓc . Sub-
sequently,Fl(x) can be expressed as [43]: 
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{Fl(r, θ) }l=1,…,4 =

{
̅̅
r

√
sin

θ
2
,

̅̅
r

√
cos

θ
2
,

̅̅
r

√
sinθsin

θ
2
,

̅̅
r

√
sinθcos

θ
2

}

(5) 

For the blending elements (or called partially enriched elements) 
[51], which are constructed between the enriched and standard ele-
ments, the partition of unity [44] does not hold. To solve this problem, 
an effective and simple approach proposed by Fries [52] is adopted in 
this study. For the enrichment function ψ(x) of enriched node set Senrich, 
define the modified enrichment function ψmod(x) as [52] 

ψ mod (x) = ψ(x)R(x) (6)  

where R(x) represents a linearly decreasing weight function called ramp 
function: 

R(x) =
∑

I∈Senrich

Nu
I (x) (7) 

Then, Eq. (3) can be rewritten as 

u(x) =
∑

I∈Sall

Nu
I (x)uI +

∑NE

α=1

∑

I∈Menrich

Nu
I (x)ψ mod

α (x)cα
I (8)  

where Menrich denotes the set of all enriched nodes and all other nodes of 
blending elements, NE represents the number of enrichment functions, 
and cI represents the vector of additional displacement DOFs of corre-
sponding enrichment function. 

In the literature, the geometrical enrichment approach [53] is often 
used to select the tip-enriched nodes in order to gain better convergence 
rates [54]. According to this approach, nodes located inside the sphere 
centered at the crack front vertex are all taken as tip-enriched nodes. As 
an alternative, in this study, a new approach based on local mesh 
refinement is proposed and the performance comparison of both ap-
proaches will be presented in Section 4.1. 

The weak form of Eq. (1) can be obtained by introducing the test 
function δu(x, t) 
∫

Ω
δε : σdΩ+

∫

Γc

[[δu]]⋅PnΓc dΓ =

∫

Γt

δu⋅tdΓ (9)  

where [[δu]] = δu
(
Γ+

c
)
− δu

(
Γ−

c
)

denotes the displacement jump across 
Γc. Afterwards, the discretization form of equilibrium equation can then 
be derived by substituting Eqs. (2) and (3) to its weak form: 

KU − QP − F = 0 (10) 

In the above equation, K, U, F, P, and Q represent respectively the 

global stiffness matrix, the global displacement vector of conventional 
DOFs and enriched DOFs, the external force vector, the fluid pressure 
vector, and the fluid-solid coupling matrix which can be written as 

Q =

∫

Γc

(Nw)T nΓc NpdΓ (11)  

where Nw represents the shape function matrix that transfers U to crack 
aperture vector w, Np represents the shape function matrix of fluid 
pressure elements [30]. 

2.2. Crack propagation criterion 

The crack propagation criterion is one of the most important com-
ponents of a numerical model to simulate the fracture propagation 
process. Generally, a quasi-static crack propagation criterion is 
composed of three parts, i.e., whether a crack front vertex growth or not, 
along which direction if it grows, and how far it grows. Schöllmann’s 
criterion, which is an extension of the 2D maximum tangential stress 
criterion (MTS) to 3D [1], has been adopted by many researchers 
[1,30,31,48]. This criterion depends on the calculation of SIFs, and 
details can be seen in our recent work [30]. However, it has been found 
that the high accuracy of SIFs obtained in 2D XFEM problems cannot be 
easily repeated in 3D XFEM problems [49] due to the geometrical 
complexity of 3D cracks. The displacements and stress fields agree well 
with the analytical solutions whereas the error of SIFs obtained in 3D 
problems can be ten times worse [55,56] than that in 2D problems. 
Besides, researchers show that the SIF-based criterion is not suitable for 
real formation rock stress conditions [57]. Thus, as an alternative, 
criteria based directly on the stress field, rather than SIFs, have been 
widely used [4,5,36,58,59] to perform simulation under mixed loading 
conditions. Doitrand and Leguillon [4] show that the twist angle of the 
segment can be determined as the one which maximizes the tensile stress 
ahead of the parent crack front. Similarly, Wu [22] and Lin et al. [5] 
conclude that the maximum principal stress criterion (MPSC) is an ideal 
choice for the simulation of daughter crack growth. This conclusion has 
also been evidenced by experiments performed by Mittelman and 
Yosibash [60,61]. Therefore, in this paper, a criterion based on the 
weighted average principal stress together with a novel weight function 
is proposed to determine when and how the crack propagates. 

Since the vertexes of the crack front are rarely located at the Gauss 
points, when calculating the stress tensor at a vertex, a non-local one 
computed as weighted average stress of Gauss points inside a calculation 
sphere is a more natural choice [62]. The weighted average stress tensor 
σ is calculated according to 

σ =
∑ng

i=1
σiwi/

∑ng

i=1
wi (12)  

where ng represents the number of Gauss points inside the calculation 
sphere centered at the crack front vertex, σi represents the stress tensor 
at Gauss point i, wi denotes the weight of Gauss point i, and in this paper: 

wi =

[

1 −

(
li

r

)
χ
]3

(13) 

In the above weight function, li represents the distance of Gauss point 
i to crack front vertex, r is the radius of the calculation sphere and is 
taken as the characteristic element size (lc) of enriched elements (in this 
paper, lc = V1/3

enr where Venr denotes the average volume of all enriched 
elements), and parameter χ controls the decay speed of the weight 
function away from the sphere center. Plots of weight functions with 
different values of χ are given in Fig. 4. It can be stated that the stress 
tensor degrades into a local one when χ is close to zero, whereas the 
stress tensor approaches to an average value with the increase of χ, 
indicating that the parameter χ possesses a clear physical meaning. The 
influence of parameter χ on crack propagation paths will be studied in 

Fig. 3. Illustration of the local Cartesian coordinate system represented by (x, 
y, z) and the cylindrical coordinate system represented by (r, θ, z) defined along 
the crack front. Crack surface is represented by spatial triangular patches in an 
explicit manner [30]. 
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Section 4.2. 
We assume a linear relationship between the magnitude of crack 

propagation and the maximum principal stress. Then if the maximum 
principal stress σi

1 is larger than the tensile strength st, the propagation 
vector pi of vertex i can be obtained as 

pi = Δamax
σi

1

σ1
ni

r (14)  

where Δamax is the model parameter, ni
r is the radial vector of the crack 

front curve s at vertex i and is perpendicular to the direction of principal 
stress, and σ1 represents the average principal stress: 

σ1 =

∮
σ1ds
∮

ds
(15) 

Finally, the coordinates of updated vertex i can be written as ṽi =

vi + pi. It should be noted that if the distance between two adjacent 
vertexes (for example, ṽi and ṽi+1) is larger than 1.5 lc, a new vertex 
should be added at (ṽi+ṽi+1)/2. 

To further improve the accuracy and robustness of the proposed 
propagation criterion, a local mesh refinement algorithm and a cubic 
spline curve fitting technique are developed and will be described in the 
next Sections 3.1 and 3.2, respectively. 

3. Implementation issues 

This section focuses on some implementation issues of the presented 
numerical strategy. Before continuing, some assumptions are made. 
Experiments show that in some cases second-order segments emerge on 
the front of daughter cracks [22]. Here we only consider the first-order 
segments formed from the parent crack front. Facet coarsening caused 
by neighboring facets merging [9] is beyond the scope of this paper. 
That means the segments are not connected with each other. Besides, the 

segment length or the total number of segments along the crack front is 
specified directly in this paper, because segment length is closely related 
to material parameters, loading conditions, as well as crack size and 
shape in a complex manner, and is very difficult to be accurately pre-
dicted [6,20,63]. 

3.1. Local mesh refinement algorithm 

In this paper, hexahedral elements with 8 nodes are adopted to dis-
cretize the 3D computational domain. Due to the inherent complexity of 
the segmentation process, the stress field of high resolution must be 
appropriately obtained before deciding the direction and length of crack 
propagation, which is of particular importance for the crack front seg-
mentation simulation. To fulfill this need, a novel refinement algorithm 
that can be fully and naturally integrated with the XFEM is proposed to 
improve the resolution of the stress field along the crack front, especially 
around the segmentation points. The proposed algorithm only applies 
refinement to enriched elements with tip-enriched nodes, hence the 
number of increased DOFs is limited, and most importantly, it can 
significantly improve the simulation accuracy, as will be shown in 
Section 4.2. Another merit of local mesh refinement is that the possible 
inconformity [41] between Heaviside enrichment and tip enrichment of 
Gauss points in enriched elements that contain kinking crack surface can 
be completely avoided. Moreover, this algorithm can be easily imple-
mented in XFEM-based codes. A versatile code written in Fortran to 
perform the algorithm described in this section has been deposited in 
GitHub and can be accessed from https://github.com/PhiPsi-Softw 
are/local_mesh_refinement.git. 

For an enriched 8-noded hexahedral element, there are 21 possible 
configurations of enriched nodes, as depicted in Fig. 5. The red, green, 
blue, and black elements are subdivided according to refinement tem-
plates (a), (b), (c), and (d) shown in Fig. 6, respectively. Refinement 
templates (a) to (d) contain 4, 11, 22, and 27 refined elements, 

Fig. 4. Plots of weight functions with different values of χ. (a) χ = 0.5, (b) χ = 1.5, (c) χ = 5, and (d) χ = 50.  
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respectively. Following this strategy, the conformity [64,65] of meshes 
can be assured, which means, two adjacent elements share the same 
nodes on both faces and edges. 

Subdivision of refinement templates (a) and (d) are straightforward. 
More attention should be paid to templates (b) and (c). Subdivision 
details of refinement template (c) are given in Fig. 7 in which the natural 
coordinates of the inserted nodes 1 to 8 are taken as (− 1/3, − 1, − 1/2), 
(1/3, − 1, − 1/2), (1/3, 1, − 1/2), (− 1/3, 1, − 1/2), (− 1/3, − 1/3, 0), (1/ 
3, − 1/3, 0), (1/3, 1/3, 0), and (− 1/3, 1/3, 0), respectively. Hence, it can 
be easily proved that the colored resulting faces shown in Fig. 7 are all 
planar. In other words, each colored face has four coplanar nodes, 
including three inserted nodes and one pre-existing node. As a result, all 
refined elements, including colored ones shown in Fig. 8, are all hex-
ahedral elements. An important issue needed to be addressed is that 
when numbering the inserted nodes to newly form a hexahedral 
element, the determinant of the Jacobian must be ensured to be positive; 
detailed implementation can be found in our Fortran code deposited in 
GitHub. Following a similar way, the natural coordinates of the inserted 

nodes of refinement template (b) can be determined. 

3.2. Cubic spline curve fitting of crack front vertexes 

Due to the complexity of crack front segmentation, it is favorable to 
improve the geometrical smoothness of the crack surface after each 
propagation step. In this study, a smooth representation of the crack 
surface is obtained by performing cubic spline curve fitting of crack front 
vertexes using the cubic smoothing spline algorithm [66]. As shown in 
Fig. 9, for a set of crack front vertexes vi (i = 1, 2, ⋯, n)
starts and ends at the segmentation points, the smoothing cubic spline f 
minimizes 

p
∑n

i=1
ŵi|vi − f (t)|2 +(1 − p)

∫

λ(t)
⃒
⃒D2f (t)

⃒
⃒2dt (16)  

where the first and second terms are for error measure and roughness 
measure, respectively. In the above equation, t denotes the curvilinear 

Fig. 5. Enriched elements with different configurations of enriched nodes. The black dots represent enriched nodes.  

Fig. 6. Refinement templates for elements with different numbers of enriched nodes. The black dots represent enriched nodes. (ξ, η, ζ) represents the natural co-
ordinate system of enriched elements before refinement. Rules followed by each template are: element edge with one enriched node are split into two edges by adding 
one node, and element edge with two enriched nodes are split into three edges by adding two nodes. 
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coordinate system along the cubic spline f; both the error measure 
weights ŵi and the piecewise constant weight function λ equal 1; p is the 
smoothing factor taken as 0.95 in this paper; and D2f represents the 
second derivative of function f. After obtaining the spline f, the 
smoothed front vertexes v′

i (i = 2, ⋯, n − 1) can be directly 
obtained [66]. Attention should be paid to v′

1 and v′

n because two 
adjacent crack front segments share the same segmentation point. In this 

study, v′

1 is obtained by taking the average value of the first smoothed 
vertex belonging to the cubic spline (the red solid spline) and the last 
smoothed vertex belonging to its neighboring cubic spline (the left red 
dotted spline). 

3.3. Numerical integration and element partitioning 

The standard Gauss integration with more Gauss points [67] can be 
used to perform numerical integration of enriched elements. However, 
since the noncontinuity of enrichment functions, the standard Gauss 
integration may lead to inaccurate results. Furthermore, if one sub- 
section of the element divided by the crack surface contains no inte-
gration point, which is quite likely to happen, the integration accuracy 
can be substantially undermined. Therefore, in this study, the enriched 
elements are partitioned into a set of tetrahedrons [67] across the crack 
surface to perform numerical integration with 4 integration points [30] 
in order to enhance the accuracy and convergence rate of the proposed 
numerical model. For standard elements and blending elements, 2 × 2 ×
2 and 6 × 6 × 6 Gauss points [30] are utilized to perform the numerical 
integration, respectively. 

In this section, we focus on the partitioning procedure of enriched 

Fig. 7. Subdivision details of refinement template (c) shown in Fig. 6. The red 
dots represent parts of the inserted nodes at specified locations. Four faces are 
plotted in color. Inserted node 2 and node 6 form an edge of the green face. 
Node 3 and node 7 form an edge of the blue face. Node 4 and node 8 form an 
edge of the purple face. Node 5 and node 1 form an edge of the orange face. 

Fig. 8. Illustration of the 22 subdivided elements of refinement template (c) shown in Fig. 6.  

Fig. 9. Illustration of the smoothness of vertexes (from v1 to v7) of a crack front 
segment. The black dotted line and the black solid line represent the initial 
crack front and the smoothed crack front, respectively. The red solid line rep-
resents the smoothing cubic spline of the segment. The left and right red dotted 
lines denote the smoothing cubic spline of the adjacent segments. 
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elements containing segmentation points in the framework of explicit 
description of crack surface. For other scenarios, readers are referred to 
our recent paper [30]. As shown in Fig. 10a, the explicit crack included 
in the tip-enriched element is composed of 6 triangular patches, i.e., Ps- 
P1-P2, Ps-P2-I1, Ps-I1-P3, Ps-P3-P4, P3-I2-P4, and Ps-P4-P5, where Ps is the 
segmentation point, I1 and I2 are intersections of element edges and 
crack surface, and P1 to P5 are intersections of element faces and crack 
surface. As illustrated in Fig. 10b to 10e, a typical partitioning procedure 
of a tip-enriched element that contains a segmentation point follows:  

(1) Let point Pe be the intersection of the angular bisector of angle P1- 
Ps-P5 and element face, then generate triangular patches Ps-Pe-P1 
and Ps-P5-Pe, as shown in Fig. 10b.  

(2) Generate triangular patches I3-P1-Pe and I4-Pe-P5 by extending Ps- 
Pe-P1 and Ps-P5-Pe, respectively, as shown in Fig. 10c, where I3 
and I4 are intersections of element edge and planes of triangles Ps- 
Pe-P1 and Ps-P5-Pe, respectively.  

(3) Subdivide the enriched element into the upper sub-element 
(Fig. 10d) and the lower sub-element (Fig. 10e).  

(4) Perform polygon triangulation for the surfaces of the upper and 
lower sub-elements, as shown by the red lines in Fig. 10d and 10e.  

(5) Create a point at the centroid (taken as the arithmetic mean of the 
coordinates of all points that make up the sub-element) of each 
sub-element.  

(6) For each sub-element, construct tetrahedrons by connecting 
points of triangles and the newly created points. 

3.4. Program flow 

The proposed numerical strategy follows the following steps:  

(1) Determine enriched elements according to the geometrical 
configuration of the crack surface [30]. 

(2) Perform local mesh refinement (Section 3.1) for enriched ele-
ments with tip-enriched nodes.  

(3) Partition the enriched elements to perform numerical integration 
(Section 3.3).  

(4) Solve the linear system to get the displacement field.  

(5) Calculate the stress tensors of all Gauss integration points.  
(6) Update crack front vertexes according to the maximum principal 

stress criterion (Section 2.2).  
(7) Perform cubic spline curve fitting of crack front vertexes (Section 

3.2).  
(8) Go to step (1) until all propagation steps have been simulated. 

4. Verification and numerical examples 

The proposed numerical strategy is implemented in an in-house 
program named PhiPsi (http://phipsi.top/) which is written in 
Fortran. The linear system is solved using the preconditioned conjugate 
gradient (PCG) method in an element-by-element manner [68]; thus, the 
memory-consuming assembly of the global stiffness matrix can be 
avoided. Besides, shared-memory parallel computing, i.e., OpenMP, is 
adopted to accelerate the computation. In this section, after verification 
of the proposed strategy, several examples will be presented to show the 
pervading and non-negligible effects of crack front segmentation. 

4.1. Verification of local mesh refinement scheme 

We consider the propagation of an edge crack in a plate subjected to 
a tensile load σ = 1 MPa to verify the local mesh refinement scheme 
described in Section 3.1. As shown in Fig. 11, the width (W), height (H), 
and thickness (T) of the plate are taken as 0.5 m, 1 m, and 0.1 m, 
respectively. The length (a) of the initial crack is set to 0.1 m. The 
elasticity modulus E and Poisson’s ratio ν are 50 GPa and 0.3, respec-
tively. The crack propagates for 4 steps over a length of 0.05 m for each 
step. The mode-I SIF (KI) along the crack front is computed using the 
displacement extrapolation method [30] and then compared with the 
following analytical solution [69]: 

KI = f (a/W)σ
̅̅̅
a

√
(17)  

where 

f (a/W) = 1.99 − 0.41
( a

W

)
+ 18.7

( a
W

)2
− 38.48

( a
W

)3
+ 53.85

( a
W

)4
(18) 

Fig. 10. Illustration of partitioning proced-
ure of an enriched element containing a 
segmentation point Ps. (a) The tip-enriched 
element and the explicit crack included in 
the element. (b) Generation of triangular 
patches (colored in green) Ps-Pe-P1 and Ps-P5- 
Pe, where Pe is the intersection of the angular 
bisector of P1-Ps-P5 and element face. (c) 
Generation of triangular patches (colored in 
red) I3-P1-Pe and I4-Pe-P5 by extending 
triangular patches Ps-Pe-P1 and Ps-P5-Pe, 
respectively. (d) The upper sub-element. (e) 
The lower sub-element.   
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Four different mesh configurations (i.e., (a) 7 × 17 × 4 in W, H, and T 
directions, respectively, similarly hereinafter; (b) 9 × 23 × 4; (c) 13 ×
33 × 4; and (d) 19 × 47 × 4) are selected to perform the simulation. The 
average SIFs at vertexes along the front of the initial crack and the final 
crack after 4 propagation steps are shown in Figs. 12 and 13, respec-
tively. In both figures, in addition to the analytical solution (denoted by 
Analytical), results obtained using the XFEM without local refinement 
(denoted by XFEM), the XFEM with geometrical enrichment for an 
enrichment radius of 0.1 m [30] (denoted by XFEM with geometrical 
enrichment), and the XFEM with local refinement (denoted by XFEM 
with local refinement) are presented. It can be found that the XFEM with 
local refinement gives the best performance towards the analytical so-
lution. It can also be noticed that the proposed local refinement scheme 
shows higher accuracy than the widely used geometrical enrichment 
scheme [30,70]. Meshes after local refinement for the final crack of the 
initial mesh configuration (c) are shown in Fig. 14, from which we can 
notice that mesh conformities are all satisfied. Variation of average KI 

along the crack front versus crack length obtained from mesh configu-
ration (d) is shown in Fig. 15, in which analytical solution as well as the 
relative errors are also presented. Good agreements and low relative 
errors can be observed, indicating the applicability and accuracy of the 
proposed local mesh refinement scheme. 

Fig. 16 presents the X-Z view of contours of the final crack aperture 
obtained from mesh configuration (d). The maximum aperture of 
Fig. 16a and b are 0.1905 mm and 0.1930 mm, respectively. In addition, 
the maximum aperture obtained using FRANC3D [71] with a fine- 
enough mesh is 0.1928 mm. The relative error compared to the 
FRANC3D solution reduces from 1.24% when using the XFEM to 0.104% 
when using the XFEM with local refinement. It can also be seen from 
Fig. 16 that the XFEM with local refinement achieves a better resolution 
of displacement field around the crack front, which is of great impor-
tance for the crack front segmentation simulation. 

4.2. Verification of crack propagation criterion 

In this section, a benchmark problem [31,72] shown in Fig. 17 is 
simulated to verify the proposed crack propagation criterion and 
determine the befitting value of parameter χ in the weight function (Eq. 
(13)). The Y and Z coordinates of the initial crack front are taken as 
24.75 mm and 14.42 mm, respectively. Material parameters including E, 
ν, and tensile strength st are taken as 25 GPa, 0.18, and 2.5 MPa [72], 
respectively. As shown in Fig. 18, the model is discretized into 3,675 
hexahedral elements before performing local mesh refinement. The 
length of propagation step (Δamax) is taken as 15 mm and the simulation 
stops after 15 propagation steps. 

Comparison of crack propagation paths predicted using different χ (i. 
e., 0.5, 1.5, 5, and 50) for the cases with and without local mesh 
refinement is presented in Fig. 19, where the upper and lower ranges of 
experimental results [72] are also shown. In addition to the path when χ 
equals 50 without local mesh refinement, obviously, all predicted paths 
are within the range of experimental results, revealing the flexibility and 
robustness of the proposed crack propagation criterion. The computed 
paths in the cases without local mesh refinement seem to be quite zigzag 
in shape, especially when χ equals 0.5 and 50, which is not surprising 
since the mesh is relatively coarse, as shown in Fig. 18. In the meantime, 
the proposed local mesh refinement algorithm can significantly smooth 
the propagation paths. It can be found that χ = 5 gives the smoothest 
path (see the red solid line in Fig. 19) which at the same time fits well 
with the median line of the experimental range. Furthermore, the best 
consistency between paths with and without local mesh refinement 
occurs when χ = 5. Thus, χ is taken as 5 in all of the following examples 

Fig. 11. The geometry and boundary conditions of a plate with a rectangle 
edge crack. 

Fig. 12. Variation of average KI along the front of the initial crack with the 
number of elements (before local refinement) of initial mesh configurations. 

Fig. 13. Variation of average KI along the front of the final crack with the 
number of elements (before local refinement) of initial mesh configurations. 
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in this paper. Finally, the contour of crack aperture after 15 propagation 
steps when χ equals 5 is given in Fig. 20, where the maximum aperture 
equals 0.161 mm. 

4.3. Simulation of three-points bending experiment 

Lazarus et al. [1,73] carried out a three-point bending fatigue 
experiment to investigate the propagation of an initial skew crack in a 
beam made of a typical brittle material (PMMA). As shown in Fig. 21, 
the height of the initial crack is 20 mm. The intersection angle between 
the crack surface and the mid-plane (Y = 0, see Fig. 21 for the coordinate 
system) of the beam is 45◦. A force F is monotonically applied in the 
middle of the top surface. Material parameters including E, ν, st, and KIc 
are taken as 2.8 GPa, 0.3, 15 MPa, and 1.24 MPa⋅m1/2, respectively 
[1,31]. A mesh with 9,108 hexahedral elements is adopted to perform 

the simulation which stops after 20 propagation steps. The crack prop-
agation length is taken as 1.2 mm. The SIFs along the crack front are 
calculated using the displacement extrapolation method [30]. The local 
mesh refinement algorithm, as well as the cubic spline curve fitting 
technique, are adopted in this example. It should be noted that the 
principal aim of this example is not to reproduce the segmentation 
process, but to assess the ability of the proposed strategy to deal with 
mixed-mode fracture. 

The computed crack propagation paths are presented in Fig. 22, in 
which the experimental results are also shown. It can be observed that 
the cracks twist sharply and then propagate in a pure mode-I state, and 

Fig. 14. Mesh after local refinement for the final crack of initial mesh configuration (c). (a) X-Y view where the black line represents the crack surface; (b) Zoom view 
of refined mesh in the X-Y view; (c) X-Z view; and (d) Y-Z view. The number of elements of the initial mesh is 1,716 and the number of added elements after local 
refinement is 600. 

Fig. 15. Average KI along the crack front versus crack length. Results obtained 
from mesh configuration (d). Relative errors between the numerical and 
analytical solutions are also shown. 

Fig. 16. X-Z view of contours of the final crack aperture obtained from mesh 
configuration (d). (a) XFEM; and (b) XFEM with local refinement. The dis-
cretization meshes [30] of the crack surface to calculate the crack aperture are 
also shown. 
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two propagation paths coincide well with each other. To make a quan-
titative comparison, positions of crack front in the Y = 5 mm plane are 
given in Fig. 23. It can be seen that the path obtained using the 
maximum principal stress criterion agrees well with the experimental 
one [73]. From the above comparisons, it can be confirmed that the 
proposed numerical strategy with parameter χ equals 5 is capable of 
predicting 3D crack propagation paths in mixed mode. 

4.4. Comparison of crack paths with and without considering 
segmentation 

In this section, simulations of crack propagation under mixed I-II-III 
loading conditions will be performed to study the effects of segmenta-
tion on the geometrical evolution process of the crack surface. As shown 
in Fig. 24, the size of the model is 50 × 50 × 50 m. Tensile stress σ = 5 
MPa is applied on the top surface. The radius (a) of the initial inclined 
penny-shaped crack is 2.5 m. The incline angle α is 45◦. The position 
angle γ in Fig. 24c is used to differentiate the location of the crack front. 
The elasticity modulus E, Poisson’s ratio ν, and tensile strength st, are 
taken as 20 GPa, 0.2, and 5 MPa respectively. The model is meshed with 
25,725 hexahedral elements. The crack propagation length is taken as 
0.25 m. The simulation continues after 8 propagation steps. 

As shown in Fig. 25, the SIFs along the front of the initial crack can be 
obtained according to the following analytical expressions [74]: 

Fig. 17. Geometry and boundary conditions of an L-shaped panel. The yellow 
surface represents the initial crack. 

Fig. 18. Finite element mesh of the L-shaped panel. (a) Y-Z view and (b) X-Z view. The bold black line in figure (a) represents the initial crack surface.  

Fig. 19. Comparison of crack propagation paths in the X  = 0 plane. LMR is 
short for local mesh refinement. 
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√
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KIII = −
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̅̅̅
a
π

√

cosγ

(19) 

It can be seen from Fig. 25 that under the action of stress σ, crack 
front tips with γ = 0 and π are in mode I-II, while crack front tips with γ 
= π/2 and 3π/2 are in mode I-III, hence segmentation might be trig-
gered. It should be noted that determination of the number of segments 
(or the segment length) is a challenging task since it is closely related to 
the shape and scale of the initial crack, the loading conditions, the 
material type [36], and even initial defects [6]. Therefore, in this study, 
four segmentation points (γ = 2π/5, 3π/5, 7π/5 and 8π/5) are directly 
specified. Notably different propagation paths with and without 
considering crack front segmentation are presented in Fig. 26. It can be 
seen in Fig. 26b that segments in the mode I-III zone rotate towards the 
direction of the applied tensile stress, resulting in more complex crack 
morphology compared to the one shown in Fig. 26a. It can also be 
noticed that crack surfaces in the mode I-II zone are similar in both 

figures. 

4.5. Hydraulic fracturing simulation 

Hydraulic fracturing treatment is widely used in oil and gas in-
dustries to improve the permeability of reservoirs and thus to enhance 
well productivity. In the literature, the hydraulic fracture in 3D simu-
lations is generally treated as a single crack without branching or seg-
mentation. Nevertheless, as shown in Fig. 1c, the crack front 
segmentation phenomenon has been extensively observed by re-
searchers in the laboratory for a long time [14–16]. In this section, we 
perform hydraulic fracturing simulations in laboratory-scale and study 
the effects of crack front segmentation process. 

As shown in Fig. 27, the radius (R) of a transparent cylindrical 
specimen made of PMMA is 5 cm. The height of the specimen is 20 cm. A 
borehole is drilled along the axis of the cylinder and cased with a metal 
pipe. An initial circular fracture with a radius (a) of 1.25 cm is 
perpendicularly positioned to the borehole. The top surface of the 
specimen is fixed and a torque (T) of 500 N⋅m is applied on the bottom 
surface to generate mode-III loading condition. Therefore, after pump-
ing the fluid, the mixed-mode I-III loading conditions can be reached. 
Since the axial symmetry of the specimen, the ratio of KIII/KI is constant 
along the crack front before segmentation occurs. The elasticity modulus 
E, Poisson’s ratio ν, tensile strength st, and fracture toughness KIc of 
PMMA are taken as 3.32 GPa, 0.38, 40 MPa, and 1.21 MPa⋅m1/2, 
respectively [22,75]. The liquid injection rate (Q) is 0.006 mL/min. The 
viscosity of the injected liquid is 0.01 Pa⋅s and the injection continues 
until the time reaches 70 min. Wu [22] performed experiments similar 
to the one described here, but a quantitative comparison is not available 
for the lack of some essential experimental information. However, the 
phenomenon and conclusions reported in Wu’s experiments [22] will be 
used as a reference. 

Submitting the fracturing parameters into analytical solutions [76] 
of circular fluid-driven fractures, it can be supposed that the fluid 
pressure is uniform [22] inside the fracture. Hence, without considering 
segmented crack front, according to the analytical solution of a uni-
formly pressurized circular crack inside a round bar [77], the evolution 
of crack radius rc and fluid pressure P over injection time t can be ob-
tained after some manipulations: 

rc(t) =

⎧
⎪⎨

⎪⎩

a, if t⩽ts
(

3QEt
8

̅̅̅
π

√
(1 − ν2)KIc

)2/5

, if t > ts

(20)  
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3QEt

16a3( 1 − ν2)G
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√ F

(rc

R
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(21)  

where ts represents the injection time when the initial fracture starts to 
propagate and can be calculated by 

ts =
8

̅̅̅
π

√
(1 − ν2)KIca5/2

3EQ
(22) 

Functions G and F take the following forms, respectively: 

G
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(23)  

Fig. 20. Contour of crack aperture after 15 propagation steps. χ is taken as 5.  

Fig. 21. Geometry and boundary conditions of a three-point bending beam 
with an initial skew crack. 
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1 − rc
2R + 0.148

(
rc
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)3
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1 − rc

R
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The SIFs KI and KIII of the initial crack can be estimated according to 
the following equations [77]: 

KI =
2
π P(t)

̅̅̅̅̅
πa

√
, KIII =

4
3π τ

̅̅̅̅̅
πa

√
(25)  

where τ is the shear stress caused by the torque T and can be calculated 
by 

τ =
2Ta
πR4 (26) 

Thus, the ratio of KIII/KI can be estimated using 

KIII

KI
=

4Ta
3πP(t)R4 (27) 

The model is regularly meshed into 27,040 hexahedral elements. The 

crack propagation length is set to 0.2 cm. For each propagation step, the 
constant fluid pressure inside the crack is determined using the bisection 
method [78] until the crack propagation criterion is satisfied [79]. In 
order to study the effects of crack front segmentation on hydraulic 
fracturing, simulation cases without considering segmentation (case 1), 
with 5 crack front segments (case 2), and with 7 crack front segments 
(case 3) are comparatively performed. In case 1, the torque is not applied 
to provide a pure mode-I loading condition which is consistent with the 
above presented analytical solutions. In cases 2 and 3, however, all 
segments are evenly spaced along the crack front. According to Eq. (21), 
the injection pressure required to trigger the crack propagation is 9.45 
MPa. Then, using Eq. (27), the ratio of KIII/KI can be calculated as 
4.49%. The injection pressure curves over time are shown in Fig. 28. A 
fairly close agreement between the results of case 1 and the analytical 
solution can be observed. Besides, it can be clearly seen that the injec-
tion pressure dramatically increases as the number of crack front 

Fig. 22. Crack propagation paths obtained from (a) the experiment [1], (b) the numerical results, and (c) the X-Z view of the numerical results.  

Fig. 23. Positions of crack front in the Y = 5 mm plane.  Fig. 24. Illustration of an inclined penny-shaped crack inside a cubic model. (a) 
The applied force and boundary conditions; (b) the X-Z view of the zoomed 
crack; and (c) the X-Y view of the zoomed crack. 
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segments increases from 0 to 5, and then to 7. Specifically, the final 
injection pressure increases by 76.5% from 3.71 MPa in case 1 to 6.55 
MPa in case 2, and then further increases by 15.4% to 7.56 MPa in case 3 
compared to case 2. The phenomenon of pressure increase observed here 
in numerical simulation is in accordance with the experimental results 
reported by Wu [22]. 

One of the segmented fractures obtained in the experiment [22] is 
shown in Fig. 29, in which 7 daughter cracks can be observed. In the 
meantime, the final simulated fracture surface with 7 segments is pre-
sented in Fig. 30. From both figures, it can be seen that segments are 
inclined at a small angle with respect to the initial fracture. In addition, 
overlapping between adjacent segments can be noticed. It is well known 
that stress shadow effects exist between two neighboring fractures 
during hydraulic fracturing and significantly affect the behavior of 
fracture growth [80]. Therefore, it can be conjectured that the in-
teractions between overlapped segments and the resulting stress shadow 

effects might be one of the primary causes for the increase of fluid 
pressure as shown in cases 2 and 3 in Fig. 28. Besides, the unbroken 
section between segments will prevent the fracture from opening, thus 
restricting the fluid flow, and higher pressure is required to further 
propagate the fracture. Accordingly, it can be concluded that ignoring 
fracture front segmentation for a mixed-mode I-III fluid driven fracture 
will underestimate the injection pressure, thus leading to unrealistic 
simulation results. 

5. Conclusions 

The crack front segmentation phenomenon has been widely observed 
in both laboratory and nature. However, it is difficult to be simulated 
using the conventional FEM because of the complex geometrical shapes. 
In this paper, a novel numerical strategy based on the mesh-independent 
XFEM is proposed, validated, and adopted to simulate the crack front 
segmentation process. Seeing the features of crack front segmentation, a 
novel crack propagation criterion based on the weighted average prin-
cipal stress is utilized to decide the magnitude and direction of crack 
front advancement. To get a better resolution of the stress field around 
the crack front, a robust and efficient local mesh refinement scheme 

Fig. 25. Variations of SIFs along the front of the initial crack. Both the 
analytical results and the numerical results are presented. 

Fig. 26. Comparison of the final propagation paths without (a) and with (b) 
considering crack front segmentation. 

Fig. 27. Illustration of the hydraulic fracturing experiment of a cylindrical 
PMMA specimen under mixed-mode I-III loading [22]. 

Fig. 28. Comparisons of injection pressure curves over time.  
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fully integrated with the XFEM is proposed. Then, a cubic spline curve 
fitting is performed to smooth the crack front lines within the framework 
of explicit crack description. The main conclusions are drawn as follows:  

(1) The proposed stress-based propagation criterion in combination 
with a local mesh refinement scheme is capable of predicting the 
evolution of crack morphology. Parameter χ in the proposed 
weight function possesses a clear physical meaning and the pro-
posed value (χ = 5) achieves a good matching performance of 
crack paths with experimental results.  

(2) The local mesh refinement scheme can accurately and robustly 
capture the stress field evolution around the crack front with 
better performance compared to the widely adopted geometrical 
enrichment strategy and can be easily implemented in existing 
XFEM codes.  

(3) The effectiveness and flexibility of the proposed model are 
numerically validated by comparing with benchmark problems 
and experimental results, which indicates that the XFEM is a 
competent method to simulate the complex phenomenon of crack 
front segmentation.  

(4) The increase of injection pressure, twisting, and overlapping of 
crack front segments are observed in the hydraulic fracturing 
simulation under mode I-III loading conditions. Ignoring fracture 
front segmentation for a mixed-mode I-III fluid-driven fracture 
will dramatically underestimate the injection pressure due to the 
stress shadow effects between adjacent overlapped segments. 

Fig. 29. Fracture with 7 segments obtained in hydraulic fracturing experiment performed by Wu [22]: (a) lateral view and (b) bottom view. Overlapping between 
segments (for example, segment 1 and segment 2) can be observed in figure (b). 

Fig. 30. Fracture with 7 segments obtained in numerical simulation case 3. (a) Bottom view of the crack surface. (b) Bottom view of the crack surface where the 
portions colored in red highlight the overlapping section between adjacent segments. (c) Lateral view of the crack surface at true deformation scale. (d) Lateral view 
of the crack surface after 20 times magnification of the deformation. 
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