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A B S T R A C T   

Hydraulic fracturing is a commonly adopted and effective well stimulation technique in the oil and gas extraction 
area. Under a mixed I/III loading condition, the crack front segmentation (i.e., the parent crack segments into 
echelon-shaped daughter cracks) usually occurs, which highly complicates the paths of fluid-driven cracks. This 
paper presents an efficient numerical model for 3D hydraulic fracturing simulation considering crack front 
segmentation on basis of the extended finite element method (XFEM). Solutions of the momentum balance 
equation and the fluid flow equation are simultaneously determined by the Newton-Raphson method along with 
a reduction technique. In the XFEM framework, a robust local mesh-refinement scheme of the tip-enriched el-
ements is designed to enhance the resolution of the near-front stress field which is crucial for the determination 
of crack segmentation and propagation behaviors. The locally refined tip-enriched elements are then divided into 
a series of tetrahedra to perform high-accuracy numerical integration. After verification of the proposed 
approach, the effects of several critical parameters in hydraulic fracturing treatments are investigated. Results 
show that crack front segmentation has significant effects on the resulting crack paths and crack aperture dis-
tribution. The propagation of hydraulic fractures will be depressed on account of the stress shadow induced by 
overlapped segments, leading to higher pumping pressure compared to the case without considering front seg-
mentation. The sensitivity analyses indicate that larger elastic modulus of rock formation, larger fluid viscosity, 
higher fluid pumping rate, and smaller fluid leak-off coefficient can alleviate the influence of crack front seg-
mentation on the pumping pressure. Larger elastic modulus, larger fluid viscosity, higher fluid pumping rate, and 
greater fluid leak-off coefficient lead to smaller twisting angles of the segments and smaller overlapping ratios.   

1. Introduction 

In the energy extraction field, hydraulic fracturing is an effective 
well stimulation technique that fractures the rock formation by a pres-
sured fluid containing proppant to form unobstructed flow paths for oil 
or natural gas, and thus to improve oil-gas production. Since the first 
hydraulic fracturing test in 1947 conducted by the Stanolind Oil and Gas 
Company at the Hugoton gas field (Montgomery and Smith, 2010), 
millions of hydraulic fracturing jobs have been successfully performed 
worldwide, resulting in a substantial increase in the supply of global oil 
and gas resources. However, hydraulic fracturing is a very complicated 
process (Jamaloei, 2021) composed of several intercoupling physical 
sub-processes such as the deformation of bedrock formations, fluid flow 

in the fracture, fracture propagation, proppant transport, fluid leak-off, 
and interaction between fluid-driven and natural fractures. Besides, field 
data and experimental studies indicate that real hydro-fractures propa-
gate in a complex three-dimensional (3D) manner under the influence of 
non-uniform in-situ stresses (Adachi et al., 2007). It is therefore of great 
interest to investigate the mechanism of 3D hydraulic fracturing and 
study the effects of key parameters including elastic modulus of rock 
formation, fluid viscosity, pumping rate, and leak-off coefficient on 
crack paths. 

It has been widely observed (Knauss, 1970; Pham and Ravi-Chandar, 
2016; Pons and Karma, 2010; Sommer, 1969) that a crack in mixed I/III 
or I/II/III modes will frequently twist and split into a series of daughter 
cracks (Fig. 1) which gradually grow towards the mode-I direction 
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during the following propagation process. This kind of phenomenon is 
usually called crack front segmentation (or fragmentation) and has been 
clearly evidenced in both nature and laboratory experiments performed 
in different kinds of engineering and geological materials (Fig. 2). Some 
attention has been paid to the mechanisms that govern the initiation and 
progression of daughter cracks along the parent crack periphery. Ac-
cording to experimental data of Homalite-100 specimens, Lin et al. 
(2010) found a correlation between crack twisting angle and segments 
spacing. Based on a theoretical model in the context of linear elastic 
fracture mechanics (LEFM), Leblond et al. (2011) suggested that the 
unstable propagation will be triggered when the stress intensity factor 
ratio KIII/KI exceeds a Poisson’s ratio related threshold. More recently, 
Leblond and Frelat (2014) proposed an expression giving the tilled angle 
of daughter crack as a function of KIII/KI. Chen et al. (2015) systemati-
cally studied the facet coarsening process (i.e., increase of facet width 
and facet spacing during propagation) of daughter cracks and revealed 
its self-similar property. After performing a series of laboratory experi-
ments, Pham and Ravi-Chandar (2016) identified a sequence of events to 

illustrate the crack front fragmentation process: the nucleation of 
daughter cracks, the arrest of some daughter cracks caused by facet 
interactions, and the possible further propagation of the parent crack. In 
addition to experimental and theoretical research, the phase-field 
method (PFM) (Biner, 2017) has been used by some researchers to 
simulate the crack front segmentation process. For example, Pons and 
Karma (2010) performed large-scale PFM simulations and compared the 
facet twist angle with experimental observation as well as theoretical 
prediction. Henry (2016) investigated the crack front fragmentation 
process under mixed loading conditions using the PFM and observed 
propagation patterns similar to experimental findings. Pham and 
Ravi-Chandar (2017) successfully modeled the formation procedure of 
echelon cracks by introducing initial defects to trigger front segmenta-
tion in their PFM model. Although the PFM has successfully replicated 
the crack front segmentation process, the drawback of extremely large 
computational costs (Henry, 2016; Pons and Karma, 2010) limits its 
application in large-scale engineering problems, for instance, hydraulic 
fracturing simulation. 

Because of the limitations and narrow application scopes of theo-
retical models (Adachi et al., 2007) (i.e., PKN model, KGD model, radial 
model, pseudo-3D model, etc), simulations of hydraulic fracturing have 
been broadly performed by adopting different kinds of numerical 
methods, such as the finite element method (FEM) (Advani and Lee, 
1982), the discrete element method (DEM) (Damjanac and Cundall, 
2016), the phase-field model (Guo et al., 2018), the boundary element 
method (BEM) (Dong and Pater, 2001), the peridynamics approach 
(Ouchi et al., 2015), the smeared crack approach (Ji et al., 2009), the 
virtual internal bond (VIB) method (Huang et al., 2013), the XFEM (Shi 
et al., 2021; Wang et al., 2021), etc. However, there exists scant litera-
ture in the context of front segmentation of fluid-driven cracks. Based on 
a multidimensional VIB model, the phenomenon of crack front seg-
mentation of hydraulic fractures in brittle rock was observed in the 
simulations performed by Huang et al. (2013). Fu and Bunger (2019) 
also noticed the splitting of crack front in their DEM-based hydraulic 
fracturing simulation. Since its first report in 1999 (Belytschko and 
Black, 1999; Moës et al., 1999), the XFEM has emerged as a powerful 
numerical method for crack propagation simulation due to its dominant 
feature of mesh independence. By introducing additional degrees of 
freedom (DOFs) governed by enrichment functions related to the 
asymptotic features of the displacement field, the remeshing procedure 
can be effectively avoided. For example, Haddad and Sepehrnoori 
(2016) performed 3D hydraulic fracturing simulations utilizing the 
XFEM-based cohesive zone model in the Abaqus software package. Paul 
et al. (2018) presented a numerical model to simulate the propagation of 

Fig. 1. Depiction of the crack front segmentation phenomenon. Several 
echelon-shaped daughter cracks are formed along the front of the parent crack 
in the mixed-mode I-III loading condition. Experimental observations (Lazarus 
et al., 2001; Pham and Ravi-Chandar, 2016) indicate that daughter cracks are of 
a similar size, in an almost perfect periodic pattern with similar distance, and 
oriented with similar angles, as shown in this figure. 

Fig. 2. Segmented cracks recorded in ex-
periments ((a) to (d)) and in nature ((e) and 
(f)). (a) Segmented hydraulic crack along a 
borehole inside a specimen made of ordinary 
gelatin (Hubbert and Willis, 1957); (b) 
Segmented hydro-fracture emerged from the 
wellbore in hydrostone block experiment 
(Abass et al., 1996); (c) Side view of a 
branched hydraulic crack at the end of a 
laboratory-scale borehole in a PMMA spec-
imen (Wu et al., 2009); (d) Lance-shaped 
facets formed along the periphery of a 
mixed I-III mode crack inside a glass spec-
imen (Sommer, 1969); (e) Natural echelon 
cracks (the top half) and its parent crack (the 
bottom half) discovered in a shale sample 
(Pollard et al., 1982); and (f) Natural tilted 
facets found in shale in Taughannock Falls 
State Park, New York (Younes and Engelder, 
1999).   
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3D non-planar fluid-driven cracks in poroelastic saturated media. Gupta 
and Duarte (2018) established a coupled numerical model to perform 
hydraulic fracturing simulation of 3D cracks using the generalized finite 
element method (GFEM), a method similar to the XFEM. Due to the 
existence of tectonic faults, joints or other geological discontinuities, 
material heterogeneity of rock formation, misalignment of perforations, 
and the effects of stress shadow, the hydraulic fractures usually undergo 
mixed loading conditions with mode III component, and thus resulting 
in complex crack geometry with echelon cracks or tilted facets after 
branching (Abass et al., 1996; Abelson and Agnon, 1997; Hubbert and 
Willis, 1957). Nevertheless, when it comes to hydraulic fracturing 
simulation, intact cracks without branching or segmentation are 
assumed by researchers in almost all available literature (Jamaloei, 
2021; Lecampion et al., 2018) on account of the geometrical complexity 
of the unstable mixed-mode fracture. Recently, Wu et al. (2009) per-
formed a laboratory-scale hydraulic fracturing experimental study using 
polymethyl methacrylate (PMMA) and concluded that ignoring crack 
front segmentation phenomenon might severely underestimate the net 
pressure and thus leading to unreliable results. Consequently, there is an 
urgent need to establish effective numerical models capable of dealing 

with this kind of segmentation problems. 
In the following, the governing equations and discretization will be 

given in Section 2. To increase the simulation accuracy and the capa-
bility of the proposed model to deal with the complex phenomenon of 
echelon cracks formation, some computational issues including the local 
mesh refinement strategy of the tip-enriched elements, fitting of crack 
front vertices, and partition and integration of enriched elements, and 
the crack propagation criterion will be presented in Section 3. Verifi-
cation of the proposed numerical model will be performed in Section 4, 
followed by the parameter sensitivity analysis given in Section 5. 

2. Coupled governing equations 

2.1. Momentum balance equation 

As depicted in Fig. 3, consider a quasi-static crack Γc in a 3D rock 
formation Ω which follows a linear elastic constitutive relation σ =

D : ε, in which σ, ε, and D represent the Cauchy stress tensor, the strain 
tensor for small deformation, and the elastic tensor depending on the 
elastic modulus E and Poisson’s ratio υ, respectively. The boundary Γ of 
Ω is made up of four parts: Γt with externally applied stress t, the interior 
boundary (i.e., the crack surface) Γc = Γ+

c ∪ Γ−
c with fluid pressure p, Γu 

with imposed displacement field u, and the remaining part of Γ. Without 
considering the body force, the momentum balance equation and its 
associated boundary conditions can be written as 
⎧
⎪⎪⎨

⎪⎪⎩

∇⋅σ = 0 in Ω
u = u on Γu
σ⋅nΓt = t on Γt
σ⋅nΓc = pnΓc on Γc

(1)  

where nΓ represents the outwards normal vector of boundary Γ. 

2.2. Fluid flow and leak-off inside the fracture 

In this paper, the fluid lag between the front of the incompressible 
and Newtonian fluid and the crack front is neglected. During hydraulic 
fracture treatment, the laminar flow which can be described using 
Poiseuille’s law (Adachi et al., 2007) along with the mass conservation 
law is the main flow regime inside the cracks. For the fluid elements with 
three fluid nodes shown in Fig. 4, {e1, e2} are base vectors of the local 
coordinate system attached to the element center. For a point x = (x1,

x2) in the fluid element, the fracture width w is directly related to fluid 
pressure gradient and fluid viscosity μ (Batchelor, 1967): 

∂w
∂t

− ∇x

(
w3

12μ∇xp
)

+QL =QI (2)  

where t denotes time, QI is the fluid injection rate per unit area, QL is the 
fluid leak-off rate to the rock formation per unit area, and ∇x represents 
the gradient operator: 

∇x =
∂

∂x1
e1 +

∂
∂x2

e2 (3) 

QL can be described by Carter’s model (Carter, 1957): 

QL =
2CL
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
t − t0(x)

√ (4)  

in which CL represents Carter’s leak-off coefficient, and t0 denotes the 
time when the crack front first reaches the point x. In addition to the 
fluid injection rate Qinj at the crack mouse, additional boundary condi-
tion and solvability condition of Eq. (2) are the zero flux applied at the 
crack tip (Jin and Arson, 2020) and the global mass conservation law 
(Adachi et al., 2007): 

Qinj =

∫

Γc

ẇdΓ +

∫

Γc

QLdΓ (5) 

Fig. 3. Schematic of a hydraulic fracture in a 3D domain.  

Fig. 4. Illustration of fluid elements and corresponding local coordinate sys-
tems. Each fluid element is composed of three fluid nodes denoted by black 
dots. The base vector e1 of the local coordinate system points to the first fluid 
node and e1 × e2 = nΓc . 
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2.3. Weak forms 

We can obtain the weak formulation of the momentum balance 
equation by introducing the virtual displacement δu(x, t), integrating by 
parts, and then employing the divergence theorem: 
∫

Ω
∇δu : σdΩ+

∫

Γc

[[δu]] ⋅ pnΓc dΓ =

∫

Γt

δu⋅tdΓ (6)  

in which [[δu]] = δu(Γ+
c ) − δu(Γ−

c ). By multiplying the test function 
δp(x, t) and integrating by parts, the weak form of the fluid flow equation 
(Eq. (2)) can be derived as: 
∫

Γc

w3

12μ∇xδp ⋅∇xpdΓ =

∫

Γc

δp
(

QI − QL −
∂w
∂t

)

dΓ (7)  

2.4. Discretization and solution strategy 

The displacement field u(x) is discretized using the XFEM in which 
the Heaviside enrichment function H(x) and crack tip enrichment 
functions Fl(x) (l= 1,⋯,4) are adopted, respectively, to depict the 
displacement jump across the crack surface and the singular displace-
ment field near the crack front (Moës et al., 1999): 

u(x)=
∑

I∈Sall

Nu
I (x)uI +

∑

I∈SH

Nu
I (x)H(x)aI +

∑

I∈Stip

Nu
I (x)

∑4

l=1
Fl(x)bl

I (8) 

In the above, Sall, SH, and Stip represent respectively the set of all 
nodes, the set of Heaviside enriched nodes, and the set of tip-enriched 
nodes, respectively; uI, aI, and bl

I denote the vectors of DOFs of Sall, 
SH, and Stip; Nu

I is the standard shape function. H(x) takes the following 
form (Moës et al., 1999): 

H(x) =
{

1 if (x − x∗)⋅nΓc ≥ 0
− 1 otherwise (9)  

where x∗ represents the closest point on the crack to point x. Functions 
Fl(x) can be written as (Moës et al., 2002): 

{Fl(r, θ)}l=1,…,4 =

{
̅̅
r

√
sin

θ
2
,
̅̅
r

√
cos

θ
2
,
̅̅
r

√
sin θ sin

θ
2
,
̅̅
r

√
sin θ cos

θ
2

}

(10)  

in which r and θ represent the polar coordinates of the cylindrical co-
ordinate system locally defined at the crack front (Moës et al., 2002; Shi 
and Liu, 2021). 

Due to the loss of partition of unity feature (Melenk and Babuška, 
1996), the enrichment functions ψ(x) of blending elements (i.e., ele-
ments whose nodes are partially enriched) require special treatment: 

ψmod(x)=ψ(x)R(x) (11)  

where R(x) is the ramp function proposed by Fries (2008). 

R(x)=
∑

I∈Senrich

Nu
I (x) (12)  

with Senrich denoting the set of enriched nodes. Thus, for blending ele-
ments, their displacements can be written as 

u(x)=
∑

I∈Sall

Nu
I (x)uI +

∑NE

α=1

∑

I∈Menrich

Nu
I (x)ψmod

α (x)cα
I (13)  

in which Menrich represents the nodes-set composed of enriched nodes of 
enriched elements and other conventional nodes of blending elements, 
cI is corresponding vectors of DOFs, and NE is the number of enrichment 
functions of blending elements. 

Substitution of Eq. (8) or Eq. (13) into Eq. (6) yields the discretiza-
tion form as (Shi et al., 2017): 

KU − QP − Fext = 0 (14)  

where K, Fext, U, P, Q denote respectively the matrix of global stiffness, 
the vector of global external force, the vector of displacement of all DOFs 
including enriched ones, the vector of pressure of all fluid nodes, and the 
coupling matrix which converts the fluid pressure to equivalent nodal 
forces applied on the crack surface: 

Q=

∫

Γc

(Nw)
T nΓc NpdΓ (15)  

in which Nw is the shape function matrix used to transform the 
displacement U to the crack width vector w, and Npdenotes the shape 
function matrix of fluid elements. In Eq. (14), K can be divided into four 
parts in accordance with the standard and enriched DOFs: 

K=

⎡

⎣

∫

Ω

(
Bstd)T DBstddΩ

∫

Ω

(
Bstd)T DBenrdΩ

∫

Ω
(Benr)

T DBstddΩ
∫

Ω
(Benr)

T DBenrdΩ

⎤

⎦

=

[
Kss Kse
Kes Kee

]
(16)  

where the superscripts std and enr are short for “standard” and 
“enriched”, respectively; and B represents the strain-displacement 
matrix. 

The solid domain is meshed with linear hexahedral elements with 
eight nodes. The standard elements without enrichment and blending 
elements are integrated with 2 × 2 × 2 and 6 × 6 × 6 Gauss points, 
respectively. For the fully enriched elements, however, the numerical 
integration is implemented using 4 Gauss points within the tetrahedra 
obtained after performing element subdivision (Loehnert et al., 2011). 
Details on the numerical integration procedure can be found in our 
previous work (Shi and Liu, 2021) except for the partitioning process of 
enriched elements that contain segmentation points (or called frag-
mentation points), which will be detailed in Section 3.2. 

The fluid pressure of point x is computed as: 

p(x)=
∑

I∈Sfluid

Np
I (x)pI (17) 

In the above, Sfluid, pI, and Np
I denote the set of fluid nodes, the nodal 

fluid pressure, and the shape function of fluid elements, respectively. 
Details on the identification of fluid nodes and elements based on an 
explicit crack surface description scheme are referred to our recent 
paper (Shi and Liu, 2021). Then, the discrete form of Eq. (7) can be 
written as (Shi et al., 2017) 

QT U̇+HP + S − G = 0 (18)  

where the dot denotes time derivative; H, S, and G are the flow matrix, 
the vector of source term, and the vector of leak-off term, respectively: 

H=

∫

Γc

w3

12μ
(
∇x

T Np)(∇xNp)dΓ (19)  

S=

∫

Γc

(Np)
T QIdΓ (20)  

G=

∫

Γc

(Np)
T QLdΓ (21) 

The implicit backward Euler method is adopted to perform the dis-
cretization in time of Eq. (18). For each time step, the coupling equations 
(Eq. (14) and (18)) are solved using the Newton-Raphson (N-R) method. 
The total computational cost can be decreased by removing the con-
ventional DOFs during the N-R iteration process by virtue of the 
reduction technique (Shi et al., 2017). The reduced residual vector Ri

R 
(subscript R is short for “Reduced”) and the corresponding reduced 
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Jacobin matrix Ji
R of N-R iteration step i can be written as, respectively: 

Ri
R =

[
0 0

− QT
e 0

](
ΔUe
ΔP

)i

+

[
Kee − KesK− 1

ss Kse − Qe

0 − ΔtHi

](
Ue
P

)i

−

(
− KesK− 1

ss Fext
s

ΔtSi − ΔtGi

)i

(22)  

Ji
R =

[
Kee − KesK− 1

ss Kse − Qe

− QT
e − ΔtHi

]

(23)  

where Qe is the submatrix of Q after deleting the terms related to 
standard DOFs, Ue represents the vector of enriched DOFs, and Fext

s is the 
subvector of Fext after deleting enriched DOFs related terms. In this 
study, the reduced Jacobin matrix Ji

R is assembled in an element-by- 
element way (Smith et al., 2014) to eliminate the need to explicitly 
form the global matrix and reduce the total memory footprint which can 
be significantly large for a field-scale hydraulic fracturing simulation. 

The increments of the N-R iteration ΔU
⌢

= {ΔUe,ΔP}T can be ob-
tained by solving the following linear system: 

Ji
RΔU

⌢i
=Ri

R (24) 

Finally, the displacement and fluid pressure fields are synchronously 

updated according to U
⌢i+1

= U
⌢i

− ΔU
⌢i 

until the solution converges: 

⃦
⃦
⃦ΔU

⌢i
− ΔU

⌢i− 1⃦⃦
⃦

⃦
⃦
⃦ΔU

⌢i− 1⃦⃦
⃦

≤ εtol (25)  

in which ‖‖ denotes L2 norm operator and the convergence tolerance εtol 

is chosen to be 10− 6. 

3. Computational implementation issues 

Before diving into the implementation details of the proposed nu-
merical method, considering the extreme complexity of the crack front 
fragmentation phenomenon, the following assumptions are given to 
make the problem numerically solvable. In this paper, only the first- 
order segments produced from the periphery of parent crack are simu-
lated, and the second-order segments (Wu et al., 2009) produced from 
the daughter cracks will not be considered. The process of neighboring 
facets merging (i.e., facet coarsening) (Chen et al., 2015) is ignored in 
this study. Besides, the number of segments emerged along the crack 
periphery depends on the material property, crack geometry, external 
loading, and initial defects in a complicated way and seems to be 
intractable to be numerically decided (Meng and Pollard, 2012; Pham 
and Ravi-Chandar, 2014, 2017). Hence, in this paper, the number of 
segments is pre-specified. 

3.1. Local mesh refinement of tip-enriched elements 

Because of the intrinsic complexity of the segmentation phenome-
non, a high-resolution stress field must be made available before 
determining the direction and length of crack growth. To this end, a 
mesh refinement approach is implemented entirely within the frame-
work of the XFEM. In order to restrain the number of added DOFs, the 
proposed approach only refines enriched elements containing tip- 
enriched nodes. Another advantage of performing mesh refinement is 
that it can eliminate the potential inconsistency between different 
enrichment functions, for example, between enrichment functions H(x) 
and Fl(x) in elements with kinking crack surface (Belytschko and Black, 
1999). Furthermore, this approach is quite simple to be implemented in 
existing XFEM codes. 

As shown in Fig. 5, there exist 21 potential combinations of enriched 
nodes for a hexahedral element. Four distinct refinement templates 
depicted in Fig. 6 are respectively used to divide the blue, fuchsia, green, 
and black elements shown in Fig. 5 according to the following general 
rules: an element edge with a single enriched node is divided into two 
parts by inserting an additional node at the trisection point near the 
enriched node; an element edge with two enriched nodes is equally 
divided into three parts by inserting two additional nodes at trisection 
points. It can be noticed that templets (a), (b), (c), and (d) are point, 
edge, face, and volume refinement templates and form 4, 11, 22, and 27 
elements after refinement, respectively. Following the proposed rules, 
the conformity (Lo, 2015; Sun et al., 2012) of the refined mesh can be 
maintained. 

The subdividing of refinement templates (a) and (d) is fairly simple. 
Templates (b) and (c) should be given more consideration. For templates 
(b) and (c) shown in Figs. 7 and 8, the coordinates of inserted nodes 
(nodes 1 to 6 for template (b), nodes 1 to 8 for template (c)) are listed in 
Table 1. In this way, we can make sure that the grey resultant faces 
illustrated in Fig. 8a are all planar and all refined elements are hex-
ahedral, thus the mesh conformity can be guaranteed. It is important to 
note that when ordering the added nodes to construct hexahedral ele-
ments, it is critical to ensure that the determinant of the Jacobian is 
positive to avoid unreasonable element stiffness matrix. A flexible 
Fortran code for performing the refinement procedure outlined in this 
paper has been uploaded to GitHub: https://github.com/PhiPsi-Softwar 
e/local_mesh_refinement, from which the robust and complete imple-
mentation of all templates can be accessed. After performing the local 

Fig. 5. Illustration of all 21 possible combinations of enriched nodes of the 
standard linear 8-noded hexahedral element. The enriched nodes are denoted 
by black dots. The combinations are classified into four categories colored in 
blue, fuchsia, green, and black, respectively. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 6. Illustration of refinement templates of enriched elements shown in 
Fig. 5. The enriched nodes are denoted by black dots. (ξ, η, ζ) shown in this 
figure denote natural coordinate systems. 
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mesh refinement, the known displacement field can be simply mapped 
to the newly added conventional nodes using the standard shape 
function. 

3.2. Integration of enriched elements 

Numerical integration of enriched elements without fragmentation 
points has been discussed in our previous work (Shi and Liu, 2021). The 
partitioning process of enriched elements with fragmentation points will 
be detailed in this section in the context of explicit crack surface rep-
resentation. As shown in Fig. 9a, a portion of an explicit crack surface 

included in a tip-enriched element, is made up of six triangular patches, 
namely Ps − P1 − P2, Ps − P2 − I1, Ps − I1 − P3, Ps − P3 − P4, P3 − I2 − P4, 
and Ps − P4 − P5, where P1 to P5 are intersection points of fracture face 
and element faces, Ps denotes segmentation point, and I1 to I2 are 
intersection points of fracture face and element edges. Then, the parti-
tioning can be performed according to the following steps: 

(1) Get the angular bisector of P1 − Ps − P5 and obtain its intersec-
tion point Pe with element face, then create the triangular patches 
Ps − Pe − P1 and Ps − P5 − Pe, as illustrated by the green surfaces 
in Fig. 9b.  

(2) Extend Ps − Pe − P1 and Ps − P5 − Pe to get intersection points I3 
to I4, and then create triangular patches I3 − P1 − Pe and I4 − Pe −

P5, as illustrated by the fuchsia surfaces in Fig. 9b.  
(3) As shown in Fig. 9c and d, divide the initial element to the upper 

section and the lower section. As illustrated by the red lines, 
partition the surfaces of both sections into triangles according to 
the polygon triangulation scheme (Lo, 2015).  

(4) Get the centroid of each section and then create tetrahedra by 
connecting triangular patches formed in step (3) and the centroid 
for each section. 

3.3. Crack propagation criterion 

Existing literature on 3D crack growth simulation using the XFEM 
commonly use the SIFs-based crack propagation criteria, for example, 

Fig. 7. Subdivision details of refinement template (b). (a) Inserted nodes 1 to 6 (colored in red); (b) Exploded view of the refined elements. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. Subdivision details of refinement template (c). (a) Inserted nodes 1 to 8 (colored in red) and related element faces (colored in grey); (b) Exploded view of the 
refined elements. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Natural coordinates of inserted nodes of templates (b) and (c).  

Inserted nodes 1 2 3 4 5 6 7 8 

Template 
(b) 

ξ −

1/3 
1/3 −

1/3 
1/3 −

1/3 
1/3 / / 

η − 1 − 1 1/2 1/2 1/2 1/2 
ζ −

1/2 
−

1/2 
1 1 −

1/2 
−

1/2 

Template 
(c) 

ξ −

1/3 
1/3 1/3 −

1/3 
−

1/3 
1/3 1/ 

3 
−

1/3 
η − 1 − 1 1 1 −

1/3 
−

1/3 
1/ 
3 

1/3 

ζ −

1/2 
−

1/2 
−

1/2 
−

1/2 
0 0 0 0  
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the Schöllmann’s criterion (Lazarus et al., 2008; Pereira et al., 2010; Shi 
and Liu, 2021; Wolff et al., 2020). However, owing to the complex 
geometrical features of 3D fractures, the excellent performance and high 
accuracy of SIFs computation in the 2D XFEM models may not be simply 
replicated in the 3D XFEM simulations (Tian et al., 2019; Xiao et al., 
2021), especially when considering the crack front segmentation phe-
nomenon (Doitrand and Leguillon, 2018). On the other hand, laboratory 
experiments and simulations based on the phase-filed method indicate 
that criteria based on the stress field are capable of modeling crack 
propagation in brittle materials under mixed loading conditions (Doi-
trand and Leguillon, 2018; Dumstorff and Meschke, 2007; Lin et al., 
2010; Meng et al., 2013; Remij et al., 2015). As a typical representative, 
the maximum principal stress (MPS) criterion has been widely adopted 
in rock engineering including hydraulic fracturing simulations (Jama-
loei, 2021; Lecampion et al., 2018; Liu et al., 2019; Rivas and Gracie, 
2020). Therefore, in this study, the MPS criterion together with the local 
mesh refinement strategy is adopted instead of conventional SIFs-based 
criteria. 

Since the stress distribution along the crack periphery is unknown, in 
this study, the weighted average stress tensor σ inside a sphere of radius 
r centered on the crack front vertex is computed by 

σ=
∑ng

i=1
σiwi

/
∑ng

i=1
wi (26) 

in which σi is the stress tensor corresponding to Gauss point i, ng is 
the number of Gauss points inside the sphere, and wi represents the 
weight function related to the distance li between the Gauss point i and 

Fig. 9. Partitioning process of the tip-enriched element which includes a segmentation point to perform numerical integration. (a) The crack surface and the 
segmentation point in tip-enriched element. (b) Extension of the crack surface. (c) The upper section of the enriched element. (d) The lower section of the 
enriched element. 

Fig. 10. Illustration of the crack front vertices updating process in the context 
of explicit crack surface description. v′

i+4 is a vertex inserted at the midpoint of 
vertices v′

i− 1 and v′

i. 
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the sphere center (Shi et al., 2022): 

wi =

[

1 −

(
li

r

)χ]3

(27)  

where χ is a control parameter that determines the rate of descent of wi 
with the increase of li, and is taken as 5 (Shi et al., 2022) in this study. 
The sphere radius r is taken as the average size of all enriched elements. 

The maximum principal stress σi
1 of vertex i can be obtained after 

getting the weighted average stress tensor σ. Then, as shown in Fig. 10, if 
σi

1 exceeds the strength of rock formation st, the vertex vi propagates to 
v′

i according to v′

i = vi + pi where: 

pi =Δamax
σi

1

σ1
ni

r (28)  

in which Δamax is a parameter that controls the propagation size, ni
ris a 

vector perpendicular to the direction of σi
1 and located in the normal 

plane of the smoothed crack front f (as will be shown in Section 3.4) at vi, 
and σ1 denotes the average value of principal stress along the curve f: 

σ1 =

∮
σ1df
∮

df
(29) 

It’s worth noting that if the distance between two consecutive 
vertices, for example, v′

i− 1 and v′

i is greater than 1.5lc, an additional 
vertex needs to be inserted at (v′

i− 1+v′

i)/2, just as illustrated in Fig. 10. 

3.4. Fitting of crack front vertices 

Once the propagated crack front is available, considering the 
complexity of the crack front fragmentation, it is certainly preferable to 
increase its geometric smoothness and thus to acquire a more robust 
result. To this end, the cubic smoothing spline technique (Boor, 2001) is 

Fig. 11. Illustration of the program workflow which consists of three layers of loops: the time-step loop, the outer loop, and the inner loop. n, j, and i represent the 
time step index, the iteration step index of the outer loop, and the iteration step index of the inner loop, respectively. tend is the desired ending time of the simulation. 
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adopted to adjust the locations of crack front vertices. For a collection of 
successive crack front vertices v′

i (i= 1, 2,⋯, n) starting from and 
ending at fragmentation points, the smoothed vertices can be obtained 
by finding the cubic spline f which minimizes the following expression 
(Boor, 2001): 

p
∑n

i=1
ŵi
⃒
⃒v′

i − f (s)
⃒
⃒2 + (1 − p)

∫
⃒
⃒D2f (s)

⃒
⃒2ds (30)  

in which the first term is used for error measure and parameters p, ŵi, s 
are the smoothing factor, the error measure weights, and the curvilinear 
coordinate system of spline f, respectively. In this paper, p and ŵi are 
taken as 0.95 and 1, respectively. In the above expression, the second 
term is used for roughness measure and D2f is the second derivative of 
cubic spline f. 

3.5. Program workflow 

The fully coupled fluid-solid numerical model based on the XFEM has 
been coded into an in-house code named as PhiPsi (http://phipsi.top). 

The program workflow is illustrated in Fig. 11. Within each time step 
(see the blue dashed box in Fig. 11 for the time-step loop), there exist 
two loops: the inner loop indexed by i (the red dashed box in Fig. 11) 
which solves the fluid-solid coupling equations using the N-R method, 
and the outer loop indexed by j (the green dashed box in Fig. 11) which 
adjusts the injection pressure Pinj to fulfill the global mass conservation 
law according to the following equation (Khoei et al., 2015; Rivas and 
Gracie, 2020): 

Pj+1
inj =Pj

inj + λj

(
1

Δt
∑

e
ΔweAe +

∑

e
Qe

LAe − Qinj

)

(31)  

where Δwe is the change of the crack width of fluid element e, Ae rep-
resents fluid element area, and λ = ∂Pinj/∂Q. The time-step size Δt is 
adaptively reduced by 50% if either the inner loop or outer loop fails to 
convergence after reaching the maximum number of iterations. 

4. Verification 

In this section, four examples are presented to show the capability 

Fig. 12. Variations of average crack radius (a) and injection pressure (b) over time. The semi-analytical results (Dontsov, 2016) are also shown.  

Fig. 13. Profiles of average crack width (a) and fluid pressure (b) along the radius at time instants 20 s, 104 s, and 500 s. The semi-analytical results (Dontsov, 2016) 
are also shown. 
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and reliability of the suggested numerical model. The first one is to 
illustrate the computational accuracy of hydraulic fracturing simulation 
by comparison with the semi-analytical solution that accounts for fluid 
leak-off (Dontsov, 2016). The second one is aim to show the ability of 
modeling crack propagation under mixed loading condition by com-
parison with experimental results. Besides, the third example focuses on 

the simulation capability of the crack front segmentation process and 
investigates the effects of segmentation on crack paths. Finally, the last 
example simulates the crack front segmentation during the hydraulic 
fracturing process of a radial crack in the cylindrical PMMA specimen 
under the combined I-III loading conditions. 

4.1. Fluid-driven penny-shaped crack 

The evolution of a penny-shaped crack with an initial radius of 3 m 
which is centrally and horizontally embedded inside a block medium of 
size 150 × 150 × 50 m (in x, y, and z directions, respectively) is simu-
lated in this example. The medium has an elastic modulus E of 30 GPa, a 
Poisson’s ratio ν of 0.35, a fracture toughness KIc of 0.5 MPa⋅m1/2, and a 
leak-off coefficient CL of 0.5× 10− 6m/

̅̅
s

√
. The fluid has a viscosity of 

0.001 Pa⋅s and is injected through the crack center at a constant rate of 
0.01 m3/s. All faces of the block are subjected to roller boundary con-
ditions. A cubic zone of size 60 × 60 × 3 m (in x, y, and z directions, 
respectively) around the crack is meshed with elements of size 0.5 ×

0.5 × 0.5 m and the resulting total number of elements is 304,704. In 
this example, however, the SIFs-based maximum circumferential stress 
criterion (Baydoun and Fries, 2012), instead of the proposed MPS cri-
terion, is employed as the propagation criterion to perform a comparison 
with analytical solutions. Besides, the local mesh refinement has not 
been used in this example since the crack is in a simple mode-I situation. 
The simulation ends when the pumping time exceeds 500 s. 

The evolutions of injection pressure and average crack radius with 
time are presented in Fig. 12, in which the semi-analytical solutions 

Fig. 14. Illustration of an initial crack (colored in fuchsia) inside a beam under 
the three-point bending test condition. 

Fig. 15. Zoom views of finite element mesh after performing local mesh refinement of tip-enriched elements for the initial crack: (a) the XY-plane view, (b) the XZ- 
plane view, and (c) the YZ-plane view. The initial crack is discretized with triangular patches colored in yellow. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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(Dontsov, 2016) that account for the roles of fluid viscosity, fracture 
toughness, as well as fluid leak-off are also shown. Detailed Matlab codes 
for the semi-analytical solutions can be found on GitHub (https://gith 
ub.com/PhiPsi-Software/PC_analytical_solution). In addition, the 
average crack width and fluid pressure distributions along the radius at 
time instants 20 s, 104 s, and 500 s are given in Fig. 13. It is shown that 
the numerical results are quantitatively consistent with the analytical 
ones in both figures, indicating the reliability of the proposed numerical 
model to perform hydraulic fracturing simulations. 

4.2. Three-point bending experiment 

In this section, a three-point bending experiment performed by 
Lazarus et al. (Lazarus et al., 2008; Citarella and Buchholz, 2008) is 
simulated to replicate the evolution of a skew crack placed at the bottom 
of a beam specimen made of PMMA. The model geometry, boundary 
conditions, and the external force F are shown in Fig. 14 in which the 
initial crack is under mixed-mode I/II/III loading (Lazarus et al., 2008). 
The parameters are taken as E = 2.8 GPa, ν = 0.3, st = 15 MPa (Lazarus 

et al., 2008; Wolff et al., 2020), and Δamax = 1.2 mm. The model is 
meshed with 11,088 elements in total. Zoom views of the mesh after 
performing local mesh refinement of tip-enriched elements for the initial 
crack are presented in Fig. 15. It needs to be mentioned that in this 
example the primary goal is to evaluate the capacity of the established 
model to cope with mixed-mode fracture propagation and hence the 
splitting of the crack front has not been considered here. 

The crack propagation path captured experimentally by Lazarus 
et al. (Citarella and Buchholz, 2008; Lazarus et al., 2008), the crack 
geometry obtained numerically in this study, and the calculated 
von-Mises stress distribution surrounding the crack front are shown in 
Fig. 16. From Fig. 16b and c, it can be concluded that the crack sharply 
twists and then grows almost planarly in a predominantly mode-I situ-
ation, which is in accordance with the experimentally recorded crack 
path shown in Fig. 16a. A comparison of crack tip positions in the rear 
face (Y = 5 mm) of the model is presented in Fig. 17, through which a 
quantitative evaluation of the simulation accuracy is available. It can be 
found that the simulated crack path coincides well with the 

Fig. 16. Crack propagation paths of the three-point bending experiment: (a) the experimentally obtained path (Lazarus et al., 2008), (b) the numerically obtained 
path, and (c) the von-Mises stress contour around the crack tip. 

Fig. 17. Comparison of crack tip positions in the rear face (Y = 5 mm) of 
the model. 

Fig. 18. Depiction of a penny-shaped crack (colored in fuchsia) in a linear- 
elastic block model. (a) Boundary conditions and external stress; (b) incline 
angle α; and (c) angle γ to mark the crack tip position. In figure (a), the zone 
marked with blue lines surrounding the initial crack is meshed with finer ele-
ments. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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experimental one, confirming the capability of the proposed numerical 
strategy to predict crack propagation under mixed loading conditions. 

4.3. Effects of segmentation on crack paths 

In this example, the crack front segmentation process in mode I-II-III 
is reproduced during the propagation of a penny-shaped crack inside a 
cube of size 50 × 50 × 30 m (in x, y, and z directions, respectively). As 

depicted in Fig. 18a, the bottom of the cube is fixed and the top face is 
undergoing an external stress of 5 MPa. The incline angle α of the initial 
crack of radius a = 2.5 m is 45◦. The angle γ is introduced to mark the 
position of the crack front, as shown in Fig. 18c. Parameters E, ν, st, and 
Δamax are respectively set to 20 GPa, 0.2, 5 MPa, and 0.25 m. A zone of 
size 9 × 9 × 5 m (in x, y, and z directions, respectively) around the initial 
crack is meshed with finer elements of size 0.3 × 0.3 × 0.3 m and the 
total number of elements is 25,725. The crack stops propagating after 
eight steps and then the resulting crack geometries for the cases with and 
without incorporating the crack front fragmentation process will be 

Fig. 19. Distributions of the numerical and analytical SIFs along the initial 
crack front. 

Fig. 20. Comparison of crack geometries after eight growth steps without (figures (a) and (b)) and with (figures (c) and (d)) fragmentation of crack front. The 
coordinates are in meters. 

Fig. 21. Schematic plot of the laboratory-scale experiments performed by Wu 
et al. (2009). The top surface of the cylinder is fixed. 
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compared. 
The analytical SIFs along the front of a penny-shaped crack is 

available as follows (Duflot, 2006): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KI = 2σ cos2 α
̅̅̅
a
π

√

KII = −
4

2 − ν σ sin α cos α
̅̅̅
a
π

√

sin γ

KIII = −
4(1 − ν)

2 − ν σ sin α cos α
̅̅̅
a
π

√

cos γ

(32) 

which has been plotted in Fig. 19. It can be noticed that the splitting 
of crack front might be triggered near the crack periphery in mixed- 
mode I-III where γ = π/2 and 3π/2. In this example, four fragmenta-
tion points are selected at γ = 2π/5, 3π/5, 7π/5, and 8π/ 5. The com-
parison of crack geometries is given in Fig. 20, from which the influence 
of crack front fragmentation can be noticed. In contrast to the crack 
morphology exhibited in Fig. 20a and b, the segment in the mixed-mode 
I-III section tends to rotate towards the mode-I direction, resulting in a 
more complicated crack morphology, as shown in Fig. 20c and d. Be-
sides, it can be seen that the final crack paths in the mixed-mode I-II zone 
(where γ = 0 and π) in both scenarios are nearly identical, confirming 
that segmentation influences only mixed-mode I-III crack front. 

4.4. Comparison with hydraulic fracturing experiment 

In this example, the laboratory-scale hydraulic fracturing experi-
ments performed by Wu et al. (2009) will be simulated to investigate the 
influence of crack front segmentation. As depicted in Fig. 21, an initial 
crack of radius a = 1.25 cm is centrally placed in a PMMA cylinder of 
radius R = 5 cm and height H = 20 cm. The fluid is pumped through a 
metal pipe along the axis of the cylinder. By applying the torque T = 500 
N⋅m, the initial hydraulic fracture is under mode I + III condition with a 
constant KIII/KI ratio along the crack periphery. Parameters E, ν, st, KIc, 
and Δamax are set to 3.32 GPa, 0.38, 40 MPa, 1.21 MPa⋅m1/2, and 
0.2 cm, respectively (Mark, 2009; Wu et al., 2009). In addition, frac-
turing parameters including fluid pumping rate Qinj, fluid viscosity μ, 
and fracturing time are set to 0.006 mL/min, 0.01 Pa⋅s, and 70 min, 
respectively (Wu et al., 2009). 

According to the semi-analytical solution (Dontsov, 2016) of 
fluid-driven penny-shaped crack, it can be seen that the fracturing is 
toughness-dominated and thus constant pressure distribution can be 
assumed within the crack. Then, in light of the analytical solutions (Tada 
et al., 2000) of crack under uniform pressure in the cylinder, the vari-
ations of crack radius rc and fluid pressure P can be written as: 

rc(t)=

⎧
⎪⎨

⎪⎩

a , if t ≤ ts
(

3QinjEt
8
̅̅̅
π

√
(1 − ν2)KIc

)2/5

, if t > ts

(33)  

P(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3QinjEt
16a3( 1 − ν2)G(a/R)

, if t ≤ ts

̅̅̅
π

√
KIc

2 ̅̅̅̅rc
√ F(rc/R)

, if t > ts

(34)  

in which G and F are functions related to geometric parameters (Tada 
et al., 2000), and ts denotes the time instant of propagation occurs: 

ts =
8
̅̅̅
π

√
(1 − ν2)KIca5/2

3EQinj
(35) 

Besides, the KIII/KI ratio has the form 

KIII

KI
=

4Ta
3πP(t)R4 (36) 

Submitting parameters into Eq. (35) yields ts = 4.29 min, then P(ts)
can be determined according to Eq. (34) as 9.45 MPa. Finally, the result 
of KIII/KI at time instant ts can be computed as 4.49%. 

Cases with no segment (case 1), 5 segments (case 2), and 7 segments 
(case 3) are comparatively simulated using a mesh with 27,040 elements 
to investigate the influence of the splitting of crack front. In case 1, the 
torque T has been ignored in order to reach a mode-I condition and 

Fig. 22. Evolutions of fluid pressure over time of cases 1 to 3. The analytical 
solution without segmentation is also shown. 

Fig. 23. Hydraulic fracture recorded in experiments carried out by Wu et al. (2009): (a) the front view and (b) the bottom view of the crack with 7 segments. In the 
right figure, overlapped sections between neighboring segments can be seen (for example, between segments 1, 2 and segments 3, 4). 

F. Shi et al.                                                                                                                                                                                                                                       



Journal of Petroleum Science and Engineering 214 (2022) 110518

14

compare with the analytical solution. Crack segments are evenly 
distributed along the crack periphery in cases 2 and 3. Fig. 22 depicts the 
evolutions of injection pressure over time. It can be observed that the 
curve of case 1 agrees well with the analytical one. Furthermore, as the 
segment number grows from zero to 5, and then subsequently to 7, the 
injection pressure rises considerably. In particular, the resultant injec-
tion pressure rises 76.5 percent from 3.71 MPa in case 1 to a much 
higher value of 6.55 MPa in case 2, and then rises another 15.4 percent 
to 7.56 MPa in case 3 in comparison with case 2. This anomalous phe-
nomenon of pressure build-up found in the simulation is consistent with 
Wu’s experimental findings (Wu et al., 2009). 

In Fig. 23, the hydraulic fracture with 7 segments obtained by Wu 
et al. (2009) is shown. By comprising with the simulated results shown 
in Fig. 24, it can be noticed that in both figures there exist overlapping 
sections between neighboring segments, and segments are inclined at 

minor angles to their initial parent cracks. It has been widely known that 
during hydraulic fracturing the stress shadowing effects between adja-
cent fractures have a major impact on fracture propagation (Shi et al., 
2016). As a result, it’s possible that the interactions between overlapped 
segments are the main causes of the fluid pressure build-up observed in 
Fig. 22. On the other hand, the unbroken parts between neighboring 
segments hinder the crack from further opening, hence causing the rise 
of required pressure. Accordingly, it can be argued that disregarding 
crack segmentation for a hydraulic fracturing simulation in mixed-mode 
I + III situation might grossly underestimate the fluid pressure, thus 
resulting in potentially unreliable numerical solutions. 

5. Results and discussion 

Field data (Economides and Martin, 2007), laboratory experiments 
(Abass et al., 1996; Wu et al., 2009), as well as simulations (Fu and 
Bunger, 2019; Huang et al., 2013) have shown that hydraulic fractures 
are usually under mixed loading conditions induced by the combined 
effects of stress shadowing, existence of geological discontinuities, 
misalignment of perforations, inhomogeneous distribution of in-situ 
stress, and heterogeneous rock medium. In this section, the relations 
between the crack front segmentation and some key parameters will be 
studied systematically. In this paper, as shown in Fig. 25, a cylinder (of 
radius 40 m and height 120 m) is adopted to perform the simulation 
since the uniform distribution of shear stress along the crack front 
cannot be easily obtained using the widely adopted cubic model. The 
model parameters are chosen according to typical hydraulic fracturing 
treatments in shale gas formation (Ahrens, 1995; Economides and 
Martin, 2007; Haddad and Sepehrnoori, 2016). The radius of the initial 
crack which is horizontally located at the model center is 3 m. The radial 
confining pressure and the axial pressure are all taken as 10 MPa. As 
depicted in Fig. 25, the external shear force τ = 2 MPa is applied to the 
sides of the cylinder to obtain a mixed-mode I/III condition. The refined 
block of size 25 × 25 × 5 m (marked with red lines) is discretized with 
elements of size 0.4 × 0.4 × 0.4 m and the resulting total number of 
elements is 90,738. Material parameters of the base case are taken as E 
= 20 GPa, ν = 0.25, and st = 5 MPa. The length of the maximum 

Fig. 24. Illustration of the numerically obtained hydraulic fracture with 7 segments: (a) bottom view, (b) bottom view with overlapped region highlighted (colored 
in green), (c) front view, and (d) front view with a scaling factor of 20. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 25. Depiction of a penny-shaped fluid-driven crack (colored in blue) in a 
linear-elastic cylindrical model. (a) the general view, and (b) the vertical view. 
The refined zone is marked with red lines. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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propagation step Δamaxis taken as 0.2 m. Fracturing parameters 
including fluid pumping rate Qinj, fluid viscosity μ, Carter’s leak-off 
coefficient CL, and fracturing time are set to 0.001 m3/s, 0.01 Pa⋅s, 
0.5× 10− 6m/

̅̅
s

√
, and 120 s, respectively. The number of segments is 

pre-specified as 5. It should be noted that before performing the hy-
draulic fracturing simulation, a static structural analysis is first run to 
ensure the initial equilibrium of geostress. 

The propagation path in both top view and front view with a scaling 
factor of 10 is presented in Fig. 26 where the overlapped sections be-
tween segments are colored in green. The average radius of the final 
crack is 10.2 m. As shown in Fig. 26b, we define the twisting angle ψ to 
represent the degrees of segmentation. Since the positions and orienta-
tions of crack front segments are numerically available, ψ can be simply 
obtained and equals 1.7◦ in the base case. Besides, the overlapping ratio 
ω is defined as the ratio of overlapping area to the projected area of the 
entire crack surface in the XY-plane. The overlapping ratio ω can be 
accurately obtained using the wand tool in combination with the mea-
sure tool provided in the software ImageJ (Pascau and Pérez, 2013), and 
the value of ω in the base case is obtained as 16.95%. Contour of crack 
aperture of the base case with crack front segmentation is given in 

Fig. 26. Illustration of the numerically obtained hydraulic fracture with 5 segments: (a) top view with overlapped region highlighted in green, and (b) front view 
with a scaling factor of 10. The twisting angle ψ and the overlapping ratio ω are shown in the right figure. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 27. Top view of the contour of crack aperture of the base case with crack 
front segmentation. Only one segment is shown due to the centrosymmetry of 
the model. A path is defined in this figure to plot the curve of crack aperture. 

Fig. 28. Curves of crack aperture of the base case with and without crack 
segmentation along the path defined in Fig. 27. 

Fig. 29. Evolutions of fluid pressure over time of the base case with and 
without considering segmentation. 
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Fig. 27. The distinct curves of crack apertures with and without crack 
segmentation along the path defined in Fig. 27 are presented in Fig. 28, 
where a choking point that might hinder the transport of proppant can 
be found. Evolutions of injection pressures over time of the base case 
with and without segmentation are shown in Fig. 29, from which the 
increase of fluid pressure can be noticed, just as mentioned in Section 
4.4. Specifically, the increasing ratio χ of the final net pressure (i.e., 
injection pressure minus the in-situ stress σz) is 48.13%. It can also be 
seen that for the case without segmentation, the injection pressure 
continues to decrease. However, in the case with segmentation, the in-
jection pressure tends to be flat and even has a tendency of increasing 
due to the interaction between overlapped segments shown in Fig. 26a. 

5.1. Effects of elastic modulus 

In this section, two different elastic moduli (a smaller one E = 5 GPa 
and a larger one E = 50 GPa) are considered while keeping other pa-
rameters unchanged. In order to compare the twisting angle ψ , all 
simulations continue until the crack radius reaches 10.2 m as obtained in 
the base case (similarly hereinafter). As shown in Fig. 30a and b, the 
parametric maps defined by dimensionless time parameter τ and leak-off 
parameter ϕ (Dontsov, 2016) are presented to show the position of the 
propagation regime of the initial crack front. Regions marked with M, K, 
M̃, and K̃ denote four limiting regimes of propagation (or vertex solu-
tions), namely, storage viscosity, storage toughness, leak-off viscosity, 
and leak-off toughness, respectively (Dontsov, 2016). It can be seen that 
with the increases of E, the propagation regime shows a changing ten-
dency from toughness dominated to viscosity dominated. The variations 
of injection pressure are given in Fig. 31a. To be specific, the increasing 
ratios χ of final net pressure for cases E = 5 GPa and E = 50 GPa are 
65.94% and 32.82%, respectively. It can be found that χ decreases with 
the increase of elastic modulus E. The curve of crack aperture along the 
path defined in Fig. 27 is shown in Fig. 32a. It can be seen that the crack 
aperture decreases with the increase of E. Twisting angles for the 5 GPa 
and 50 GPa cases are 2.56◦ and 1.48◦, respectively, which can be 
explained by the fact that higher fluid pressure leads to a smaller KIII/KI 
ratio and thus a smaller twisting angle. A smaller twisting angle means a 
narrower gap between overlapped segments. According to the 
stress-based crack propagation criterion given in Section 3.3, the over-
lapped segments with a narrower gap are harder to propagate towards 

each other along the circumferential direction. Thus, it can be conjec-
tured that a smaller twisting angle leads to lower overlapping ratios. For 
instance, in the base case, the overlapping ratios ω are 19.26% and 
15.72% for the 5 GPa and 50 GPa cases, respectively. 

5.2. Effects of fluid viscosity 

In this section, two other fluid viscosities (a smaller one μ = 0.001 
Pa⋅s and a larger one μ = 0.1 Pa⋅s) are considered, and all other pa-
rameters are kept unchanged. The parametric maps of the propagation 
regime are given in Fig. 30c and d, it can be found that with the increases 
of fluid viscosity, the propagation regime shows a variation tendency 
from region K to region M. The variations of injection pressure are given 
in Fig. 31b, in which the increasing ratios χ for cases μ = 0.001 Pa⋅s and 
μ = 0.1 Pa⋅s are 79.89% and 39.99%, respectively. It can be found that χ 
decreases with the increase of fluid viscosity μ. Hence, it can be 
concluded that, from the point of view of pressure increase degree, the 
influences of crack front segmentation in toughness-dominated frac-
turing cases are stronger than in the viscosity-dominated cases. Besides, 
the curve of crack aperture along the path defined in Fig. 27 is shown in 
Fig. 32b, from which it can be found that the crack aperture increases 
with increasing μ and the curve is noticeably flatter for a smaller μ. 
Twisting angles for the 0.001 Pa⋅s and 0.1 Pa⋅s cases are 1.82◦ and 1.52◦, 
respectively, and the corresponding overlapping ratios are 17.41% and 
16.13%. 

5.3. Effects of fluid pumping rate 

The fluid pumping rate is another important parameter in hydraulic 
fracturing treatment. Hence, in this section, Qinj = 0.0005 m3/s and 
0.005 m3/s are simulated to compare with the base case. The parametric 
maps of the propagation regime are given in Fig. 30e and f, it can be seen 
that as the fluid pumping rate increases, the propagation regime shows 
the tendency of transformation from toughness domination to viscosity 
domination. The evolutions of injection pressure with time are shown in 
Fig. 31c, in which the increasing ratios χ for cases Qinj = 0.0005 m3/s and 
Qinj = 0.005 m3/s are 49.86% and 31.75%, respectively. It can be found 
that χ decreases with the increase of Qinj. The curve of crack aperture 
along the path is given in Fig. 32c, from which it can be observed that 
the crack aperture increases with increasing Qinj. In addition, twisting 

Fig. 30. Parametric maps of the propagation regime for the cases with (a) E = 5 GPa; (b) E = 50 GPa; (c) μ = 0.001 Pa⋅s; (d) μ = 0.1 Pa⋅s; (e) Qinj = 0.0005 m3/s; (f) 
Qinj = 0.005 m3/s; (g) CL = 0.5 × 10− 7 m/s1/2, and (h) CL = 0.5 × 10− 5 m/s1/2. The dimensionless parameters τ and ϕ (Dontsov, 2016) are taken as the average value 
of all vertices along the crack front of the initial crack. The red dots represent the base case and the white dots represent the sensitivity analysis cases. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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angles for the 0.0005 m3/s and 0.005 m3/s cases are 1.74◦ and 1.58◦, 
respectively, and the corresponding overlapping ratios are 17.22% and 
16.51%. 

5.4. Effects of fluid leak-off coefficient 

The effects of fluid leak-off coefficient CL are investigated in this 
section by simulating the cases where CL = 0.5 × 10− 7m/

̅̅
s

√
and CL =

0.5× 10− 5m/
̅̅
s

√
. The parametric maps of the propagation regime are 

given in Fig. 30g and h, it can be noticed that as the fluid leak-off co-
efficient increases, the propagation regime shows a variation tendency 
towards the leak-off viscosity domination. The evolutions of injection 
pressure with time are shown in Fig. 31d and the increasing ratios of 
injection pressure (χ) for cases CL = 0.5 × 10− 7m/

̅̅
s

√
and CL = 0.5×

10− 5m/
̅̅
s

√
are 44.14% and 57.43%, respectively. It can be noticed that χ 

increases with the increase of CL. The curve of crack aperture along the 
path is given in Fig. 32d. It can be observed that the crack aperture 
decreases with increasing CL, and CL shows minimal impact compared to 
other parameters. Besides, twisting angles for the 0.5× 10− 7m/

̅̅
s

√
and 

0.5 × 10− 5m/
̅̅
s

√
cases are 1.71◦ and 1.66◦, respectively, and the corre-

sponding overlapping ratios are 17.01% and 16.86%. 
The twisting angles and overlapping ratios of each case are sum-

marized in Fig. 33a and b, respectively. It can be seen that the elastic 
modulus E of rock formation has the strongest influence on both the 

twisting angle and the overlapping ratio, followed by the fluid viscosity 
μ, the fluid injection rate Qinj, and the fluid leak-off coefficient CL. 

6. Conclusions 

The front segmentation phenomena of fluid-driven cracks under 
mixed loading conditions have been widely noticed in both laboratory 
experiments and nature. Nevertheless, it’s still a very challenging task to 
accurately capture this complex process in numerical simulation and the 
available models are very limited in the literature. In this paper, a 
capable numerical model in light of the mesh-independence character-
istic of the XFEM is proposed. The fully-coupled momentum balance 
equation and the fluid flow equation are solved using the Newton- 
Raphson method. A stress-based criterion is proposed to trace the evo-
lution of crack surfaces. Besides, in the frame of the XFEM, a robust local 
mesh refinement scheme of the tip-enriched elements is implemented to 
effectively enhance the resolution and accuracy of the near-front stress 
field. Afterwards, the locally refined elements are partitioned into 
tetrahedra to perform numerical integration. According to the verifica-
tion examples and parameter sensitivity study performed in this paper, 
the following conclusions can be drawn: 

Fig. 31. Effects of elastic modulus (a), fluid viscosity (b), fluid pumping rate (c), and fluid leak-off coefficient (d) on injection pressure of segmented crack.  
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Fig. 32. Effects of elastic modulus (a), fluid viscosity (b), fluid pumping rate (c), and fluid leak-off coefficient (d) on crack apertures along the path defined in Fig. 27.  

Fig. 33. Summary of twisting angles ψ (a) and overlapping ratios ω (b) obtained from the parameter sensitivity analysis.  
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(1) The proposed numerical strategy is capable of modeling the front 
segmentation process of hydraulic fractures under mixed loading 
conditions. 

(2) Due to the mechanical interactions between overlapped seg-
ments, a higher pumping pressure is required to propagate the 
crack compared to the cases without considering crack front 
segmentation.  

(3) Larger elastic modulus of rock formation, larger fluid viscosity, 
higher fluid pumping rate, and smaller fluid leak-off coefficient 
can alleviate the effects of crack front segmentation on the in-
jection pressure.  

(4) The influences of crack front segmentation on the injection 
pressure in toughness-dominated cases are stronger than that in 
viscosity-dominated cases.  

(5) Larger elastic modulus, larger fluid viscosity, higher fluid 
pumping rate, and greater fluid leak-off coefficient lead to 
smaller twisting angles of the segments and smaller overlapping 
ratios. Besides, compared to other parameters, the fluid leak-off 
coefficient has a limited effect on the twisting angle and over-
lapping ratio.  

(6) When considering crack front segmentation, chocking points of 
crack apertures are noticed on the paths defined along the radial 
direction. 
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