
Contents lists available at ScienceDirect

Journal of Petroleum Science and Engineering

journal homepage: www.elsevier.com/locate/petrol

An XFEM-based numerical model to calculate conductivity of propped
fracture considering proppant transport, embedment and crushing

Fang Shia,b, XiaoLong Wanga, Chuang Liua, He Liuc, HengAn Wua,∗

a CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027,
Anhui, China
b Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin institute of technology, Huai'an, 223003, Jiangsu, China
c PetroChina Research Institute of Petroleum Exploration & Development, 20 Xueyuan Road, Haidian District, 100083, Beijing, China

A R T I C L E I N F O

Keywords:
Hydraulic fracturing
Proppant
Fracture conductivity
XFEM

A B S T R A C T

The accurate conductivity evaluation of propped hydraulic fracture is crucial for the design and optimization of
hydraulic fracturing treatments to achieve economic production of hydrocarbon. In this paper, a coupled nu-
merical model in consideration of transport, placement, deformation, embedment and crushing of proppant is
proposed to calculate the conductivity within the framework of the extended finite element method (XFEM). In
the model, the fluid-solid coupling equations are simultaneously solved. The proppant transport is modeled
using the upwind method. The Hertz contact model is used to obtain the width of propped fracture considering
the deformation and embedment of proppant. A damage model is proposed to describe the conductivity re-
duction of the proppant pack due to grain failure. Size effects on the strength of proppant are considered using
Weibull distribution and Griffith theory. After comparison with experimental data, the proposed model is em-
ployed to conduct sensitivity studies of several parameters on fracture conductivity. Results show that the most
sensitive factor is proppant size, followed by proppant concentration, pumping rate of slurry, elastic modulus of
proppant, and pumping strategy of proppant. The effects of elastic modulus of formation and Poisson's ratios of
proppant and formation are negligible in comparison to other factors. It is also found that with the increase of
proppant size, the fracture conductivity increases initially and decreases after reaching a peak. This paper
contributes to a better understanding of the effects of related factors on fracture conductivity and provides a
useful numerical tool for proppant selection in hydraulic fracturing design.

1. Introduction

Hydraulic fracturing is a widely used well stimulation technology in
the oil and gas industry. The objective of hydraulic fracturing is to
generate and maintain the conductive flow path between the wellbore
and the formation. To this end, the high-pressure fluid is pumped to
overcome the breakdown pressure of the formation to create hydraulic
fractures. During the process, proppants such as sand or ceramic are
injected with the fluid into fractures to keep fractures open after the
fluid pressure is released. Field evidence, laboratory experiments and
numerical studies show that the proppant selection (type, size, amount
etc.) plays critical roles in improving fracture network conductivity and
achieving economic production rates (Economides and Martin, 2007;
Tomac and Gutierrez, 2013; Tong and Mohanty, 2016; Yu et al., 2015).
Thus, it is of great significance to investigate the impacts of proppant
and related factors on fracture conductivity.

During the past decades, a lot of experimental and theoretical

studies on the conductivity of propped fracture have been carried out,
indicating that the conductivity is relevant to many variations such as
closure stress, proppant size, proppant mechanical properties, proppant
concentration and distribution, proppant deformation, proppant
crushing, proppant embedment, formation mechanical properties, and
so on. For instance, Cooke (1975) described a theoretical model to
evaluate the effects of fracturing fluids on fracture conductivity and
compared model predictions with laboratory experimental results. He
(Cooke, 1975) found that the factors that play important roles in con-
ductivity reduction include concentration of proppant, amount of re-
sidue in the fluid, and porosity of the proppant. Lacy et al. (1997, 1998)
experimentally studied the effects of fluid viscosity, proppant size,
closure stress, and leak-off rate on proppant embedment. They (Lacy
et al., 1997, 1998) found that closure stress is the primary factor that
determines embedment, with proppant size and proppant concentration
also being important. Fredd et al. (2001) studied the effects of proppant
concentration, proppant strength, and formation properties on fracture
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conductivity through a series of laboratory conductivity experiments,
and found that conductivity can be proppant- or asperity-dominated,
depending on the proppant concentration, proppant strength, and for-
mation properties. Awoleke et al. (2012) carried out a systematic in-
vestigation and found that the effects arranged in order of decreasing
effect on conductivity are closure stress, temperature, and proppant
concentration. Rivers et al. (2012) performed a series of laboratory
experiments and studied the effects of proppant concentration and
closure stress, and it is observed that increasing proppant concentration
in the fracture shows higher conductivity values in some cases, while
increasing the closure stress results in a significant loss in conductivity
for all cases. Alramahi and Sundberg (2012) studied the effect of
proppant embedment in shales on hydraulic fracture conductivity and
proposed an analytical model to calculate the conductivity of hydraulic
fractures based on their laboratory measurements. They (Alramahi and
Sundberg, 2012) found that the same physical mechanisms responsible
for proppant embedment are also responsible for the loss of fracture
conductivity. Neto et al. (2015) developed a mathematical model which
incorporates the effects of proppant compressibility and in-situ stresses
to evaluate the performance of the hydraulic fracture partially filled
with proppant pack. Gao and Li et al. (Gao et al., 2012; Li et al., 2015)
derived an analytical model to calculate the width of propped fracture
in consideration of proppant deformation and embedment, and their
calculation models adequately matched experimental results.
Shekhawat and Pathak (2016) developed a new equipment for onsite
testing and proposed a new method to determine permeability reduc-
tion of monolayer proppant pack with increasing closure pressure. Li
et al. (2016) also created a new mathematical model, which considers
factors including the particle size, closure pressure, strains of the rock
and proppants, embedment, crushing rate, looseness coefficient and so
on, to calculate proppant-packed fracture conductivity. In addition to
those mentioned above, some other factors affecting fracture con-
ductivity such as conductivity damage due to fracturing fluid (Zhang
et al., 2015), non-Darcy flow effect (Lopez-Hernandez et al., 2004) have
also been studied.

From the point of view of engineering design, it is difficult to op-
timally select proppant just based on experience or theoretical knowl-
edge. The reason is that the proppant-related problems are quite com-
plicated as they involve various proppant-related physical processes
including proppant migration along fractures, gravitational settlement
of proppant, deformation of proppant, embedment of proppant particles
into the surface of hydraulic fracture, and proppant crushing.
Consequently, some numerical models have been proposed by re-
searchers to gain a better understanding of proppant-related problems.
For instance, Ouyang et al. (1997) proposed a numerical model to-
gether with an adaptive finite element procedure to study the proppant
distribution in a propagating hydraulic fracture. In his study (Ouyang
et al., 1997), however, there are several subtle issues that arise re-
garding the coupling between the gridding problem and the fluid-
fracture calculation. Weng et al. (2011) developed a hydraulic fracture
model based on the displacement discontinuity method (Crouch and
Starfield, 1983) to simulate complex fracture network propagation in
consideration of proppant transport. In their study (Weng et al., 2011),
the width of each fracture is calculated according to an analytical so-
lution. In order to investigate an unsuccessful hydraulic fracturing op-
eration in the North Germany Basin, Zhou et al. (2014) developed a
numerical model to simulate fracture propagation, closure, contact, and
proppant transport based on the finite volume method and the finite
difference method. They (Zhou et al., 2014) found that although the
lower part of the fracture was propped, the middle part was fully closed
without any support from the proppant if the perforation has not been
set 15m lower. Dontsov and Peirce (2015) developed a numerical
model capable of capturing both tip screen-out and gravitational set-
tling effects and found that the particles can reach the tip of the fracture
even without leak-off. Kong et al. (2015) developed a coupled numer-
ical model considering proppant transport and investigated the effects

of several factors on hydraulic fracturing performance, and found that
reservoir matrix permeability, proppant volume and relative proppant/
fluid density have the highest impact on hydraulic fracturing efficiency.
Raymond et al. (2015) modeled the proppant distribution in a forma-
tion containing natural fractures using the material point method
(Sulsky et al., 1994), and simulation results show that fractures oriented
in directions close to the hydraulic fracture direction facilitate the
proppant placement. Han et al. (2016a) proposed a coupled geo-
mechanics and fluid flow model considering the failure of proppant
pack and fracture conductivity damage, and found that proppant near
the wellbore has a higher likelihood of being crushed. Han et al.
(2016b) proposed a new computational fluid dynamic models to si-
mulate the proppant transport within complex fracture geometries, and
found that at fracture junctions, turbulent flow regime will develop and
help proppant transport to natural fractures. Shiozawa and McClure
(2016) performed simulations of proppant transport in an Eu-
lerian–Eulerian framework considering proppant settling due to
gravity, tip screen-out, and fracture closure, and they concluded that
proppant tends to accumulate at the intersections between natural and
hydraulic fractures.

The extended finite element method (XFEM) (Belytschko and Black,
1999; Moës et al., 1999) has been proved to be an efficient tool for the
numerical modeling of fracture propagation. In the XFEM, no re-
meshing is required during fracture propagation, and the dis-
continuities can be modeled by introducing additional enriched degrees
of freedom (DOFs) to the nodes whose support domains are cut by
fractures (Belytschko and Black, 1999; Moës et al., 1999). In recent
years, attracted by the great advantages of XFEM, some researchers
have utilized it to investigate hydraulic fracturing problems such as
basic coupling algorithms (Gordeliy and Peirce, 2013a, 2013b;
Lecampion, 2009), hydraulic fracture propagation in porous media
(Mohammadnejad and Khoei, 2013a, 2013b), and interaction between
the hydro-fracture and the frictional natural fracture (Dahi-Taleghani
and Olson, 2011; Khoei et al., 2015, 2016; Shi et al., 2017; Taleghani
and Olson, 2014). In our recent work (Shi et al., 2016), we established a
fully coupled XFEM-based approach for modeling hydraulic fracturing
in consideration of the transport and placement of proppant. In that
model, the proppant is treated as a rigid body, and the propped fracture
is modeled by applying displacement boundary conditions to restrict
the normal closure of propped fracture. In reality, the width of propped
fracture will decrease due to the deformation, embedment and crushing
of proppant under the increasing closure stress after the pumping is
completed (Han et al., 2016a). Additionally, the width of propped
fracture is the major factor that influences the fracture conductivity
(Alramahi and Sundberg, 2012). Thus, it is of great importance to take
the proppant deformation, embedment and crushing into account when
calculating fracture conductivity. To this aim, a more sophisticated
numerical model is developed in this study.

As stated above, numerous studies on fracture conductivity have
been conducted. It still lacks, however, an effective numerical model to
perform studies on the complicated process of hydraulic fracturing in
comprehensive consideration of proppant, and facilitate hydraulic
fracturing design, such as proppant selection based on collected field
data and the other design parameters. As a result, in this paper, we will
present a fully-coupled numerical model to simulate the hydraulic
fracturing process and calculate the conductivity of the propped frac-
ture in the context of XFEM. Several key physical processes including
proppant transport, placement, deformation, embedment, and crushing,
as well as the size effect of proppant grains on strength (Tsoungui et al.,
1999) are considered to gain a complete picture of how various vari-
ables influence the fracture conductivity. Finally, on the basis of the
proposed model, we will conduct a sensitivity analysis of several factors
on fracture conductivity, including proppant size, elastic moduli of
proppant and formation, Poisson's ratios of proppant and formation,
pumping rate of slurry, proppant concentration and pumping strategy
of proppant.
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2. Problem formulation and solution approaches

Consider a two-dimensional domain Ω containing a hydraulically
driven fracture ΓHF filled with high-pressure incompressible fluid, as
depicted in Fig. 1. The domain also contains a propped fracture ΓPF
filled with proppant. The boundary of the domain is Γ and the unit
outward normal vector of Γ is represented by nΓ . The prescribed trac-
tions t and the displacements u are imposed on the boundary Γt and Γu,
respectively. The two faces of fractures are expressed by the positive
“+” and the negative “−” signs. The unit outward normal vectors of
negative faces of the hydro-fracture ΓHF and the propped fracture ΓPF
are donated by nΓHF and nΓPF , respectively. The slurry is injected at a
constant rate of Qinj. In order to describe the flow of slurry, a one-di-
mensional curvilinear coordinate system (donated by s) is defined along
the hydro-fracture, and the origin of the coordinate system is positioned
at the pumping point.

Some assumptions are made in this study. Generally, the slurry
behaves as a non-Newtonian fluid. However, it can be assumed as a
Newtonian fluid for simplicity in computer simulation of hydraulic
fracturing (Adachi et al., 2007; Hammond, 1995; Tomac and Gutierrez,
2013). We assume that the propagation of the fracture is a quasi-static
process, and no fluid lag exists between the fracture tip and the fluid
front. The formation is considered as a brittle material and an im-
permeable media. The gravitational settling of proppant, which might
not be particularly significant for the relatively lightweight proppant or
the relatively high viscosity slurry (Zoveidavianpoor and Gharibi,
2015), is not taken into account. In addition, the proppant flow back,
grain migration and gel damage are also not taken into consideration in
this paper.

2.1. Deformation of formation

The strong form of the equilibrium equation of the domain in the
absence of body forces can be expressed as

∇⋅ = Ωσ 0 in (1)

where σ is the Cauchy stress tensor, and (∇⋅) is the divergence operator.
The boundary conditions can be written as
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where p represents the fluid pressure, tpropped is the traction vector
acting on the faces of propped fracture ΓPF.

Linear elastic constitutive is applied to describe the behavior of the

formation, that is

=σ D ε: (3)

in which D is the elasticity matrix, ε is the strain tensor associated with
displacement u. Under the assumption of small deformation, ε can be
determined from

= ∇ + ∇ε u u1
2

( ( ) )T
(4)

2.2. Flow of slurry and proppant

The one-dimensional flow of slurry and proppant in the hydro-
fracture must satisfy the mass conservation equation. As the fluid is
assumed to be incompressible with Newtonian rheology and there is no
fluid leak-off, the continuity equations can be expressed as follows for
any point s along the hydro-fracture

∂
∂

+
∂
∂

− =w
t

q
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Q δ s( ) 0s
inj (5)

∂
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+
∂
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− =cw
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( ) ( ) 0s

inj inj (6)

where w represents the width of the hydro-fracture; c is the proppant
volumetric concentration of the slurry defined as the fraction of the
volume occupied by the proppant; qs is the slurry flux; δ(*) is the Dirac
delta function, and c t( )inj represents the volumetric concentration of
proppant pumped at the pumping point at time instant t. It should be
noted that the proppant would be prevented from passing through the
narrow portion, for example, the near-tip region, if the proppant size is
larger than the width of the fracture. It is assumed that the flow in the
fracture is laminar flow and has a low Reynolds number (Adachi et al.,
2007). Therefore, the fluid flow inside the fracture can be simplified to
the flow along a channel by using lubrication theory (Adachi et al.,
2007). Under the framework of the lubrication theory, the slurry flux
within the hydro-fracture can be given by the Poiseuille's law
(Batchelor, 1967)

= −
∂
∂

q w
μ

f
p
s12 (0)s s

3

(7)

where μ(0) is the viscosity of the slurry without proppant. fs is a non-
dimensional function defined as

=f
μ
μ c

2 (0)
3 ( )s (8)

where μ(c) is the effective viscosity of the slurry given as (Zhou et al.,
2014)

= ⎛
⎝
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−
μ c μ c

c
( ) (0) 1

ˆ

m

(9)

In the above equation, the exponent m and the saturation con-
centration ĉ are taken as 1.05 (Adachi et al., 2007) and 0.6, respec-
tively, in this paper. Substituting Eq. (7) into Eq. (5) leads to the fol-
lowing Reynolds equation
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where =k fw
μ s12 (0)

3
. Eq. (10) can be solved with the following initial and

boundary conditions
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and the global mass conservation equation

Fig. 1. Illustration of a domain containing a hydro-fracture filled with high-
pressure fluid and a propped fracture.
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∫ ∫=wds Q dt
s t

inj0 0

tip

(12)

In the above, stip represents the location of the hydro-fracture tip.

2.3. Weak form of governing equations

By introducing the trial function u (x, t) and test function δu (x, t)
for the displacement field, the weak form of equilibrium equation can
be expressed as

∫ ∫ ∫ ∫+ ⋅ + ⋅ = ⋅δ dΩ δ p dΓ δ dΓ δ dΓε σ u n u t u t:
Ω Γ Γ Γ

propped
ΓHF

HF
PF t

(13)

where the symbol ∗ = ∗ − ∗+ − represents the difference of the vari-
able “∗” between face “+” and face “−” of fractures. Therefore, u
stands for the displacement jump across the faces of fractures.

By introducing test function δp (s, t), the weak form of the Reynolds
equation (Eq. (10)) can be given as

∫ ⎛
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2.4. Discretization of governing equations

To discrete the equilibrium equation, the XFEM is employed to
approximate the displacement field u. For the hydraulic fracturing
problem, the displacement u for any point x in the domain Ω can be
approximated by adding two types of enrichment shape functions as

∑ ∑ ∑ ∑= + +
∈ ∈ ∈ =

N N H N Fu x x u x x a x x b( ) ( ) ( ) ( ) ( ) ( )
I N

I
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I
I N

I
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I N

I
u

l
l I

l

1

4

all frac tip

(15)

where N all is the set of all nodes in the mesh, N frac is the set of nodes
whose support domains are cut into two parts by the fracture, and N tip

is the set of nodes whose support domains are partially cut by the
fracture. NI

u is the standard finite element shape functions of node I. uI

is the standard nodal displacement vector. aI, bI
l (l=1,4) are the nodal

enriched DOF vectors. H(x) and Fl(x) are the enrichment shape func-
tions to account for the displacement jump across fracture surfaces and
the singular displacement field around the fracture tip, respectively. H
(x) is usually taken as the signed Heaviside function; Fl(x) for the tip
enrichment in brittle materials takes the general form:

== { }F r θ r θ r θ r θ θ r θ θ{ ( , )} sin
2

, cos
2

, sin sin
2

, sin cos
2l l 1

4

(16)

where (r, θ) defines the polar coordinate system with the origin at the
fracture tip.

To approximate the one-dimensional pressure field p (s, t) inside a
hydro-fracture, the fracture interface ΓHF is discretized into fluid ele-
ments using linear shape functions. The nodes of the fluid elements are
regularly arranged at the intersections of hydro-fractures and edges of
solid elements, as well as the fracture tips. Thus, the finite element
approximation of the pressure field can be expressed as

∑=
∈

p s N s p( ) ( )
I N

I
p

I
hf (17)

where N hf is the set of nodes of the fluid elements defined along the
hydraulic fracture; N s( )I

p represents the linear shape function of nodal
pressure pI for fluid node I, and it is defined in the natural local co-
ordinate system ξ, namely

⎧
⎨⎩

= −
= +

N ξ ξ
N ξ ξ

( ) ( 1)/2
( ) ( 1)/2

p

p
1

2 (18)

The fracture opening displacement vector w can be approximated

by

∑= ≡
∈

Nw u N U
I N

I
w

I
w

w (19)

where N w represents the set of nodes of elements that contain the fluid
nodes; Nw is the shape function matrix which transfers the nodal dis-
placement to fracture opening; U is the global nodal displacement
vector.

By substituting the displacement and pressure approximations (Eq.
(15), (17) and (19)) and the linear elastic constitutive equation (Eq. (3))
into the weak form of the equilibrium equation (Eq. (13)) and the slurry
flow equation (Eq. (14)), it is straightforward to obtain the discretized
system of the nonlinear coupled equilibrium and flow continuity
equations as

− − =KU QP F 0ext (20)

+ + =Q U HP S˙ 0T (21)

In Eq. (20), K is the global stiffness matrix:

⎡
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Γ
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(22)

where B is the matrix of shape function derivatives; the matrix Dpropped

represents the constitutive relation between tpropped and fracture width
w, namely, =d dt D wpropped propped . The detail of Dpropped will be given in
Section 2.7. The coupling matrix Q that transfers fluid pressure vector P
into equivalent nodal forces and the external loading vector Fext are
defined as

∫= dΩQ N n N( )
Ω

w T p
ΓHF (23)

∫= dF N t( ) Γext u T
Γt (24)

In Eq. (21), the flow matrix H and the source term S are defined as

∫= ⎛
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∂
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∂
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k
s s

dsH N N
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p T p

HF (25)

= =s QS N ( )p T
s inj0 (26)

Taking time integration of Eq. (21) over a time step, we can obtain

∫ + =+ + tQ U HP S 0( ˙ )d
t

t T
n

n 1

(27)

where n represents the time step number. Implicit backward Euler time
discretization is employed in this paper, so according to Eq. (27), we
have

− + =+ ++ Δt ΔtQ U U HP S 0( )T
n n n1 1 (28)

where Un+1, Pn+1 are the unknown displacement field and fluid pres-
sure at the (n + 1)th time step, respectively; Un is the already known
displacement field at the previous time step; Δt is the time increment
between two adjacent time steps. In addition, after the time dis-
cretization, Eq. (20) can be rewritten as follows in every time step

− − =+ +K U QP F 0n n n
ext

1 1 (29)

Finally, Un+1, Pn+1 can be obtained by solving the coupled Eqs. (28)
and (29).

2.5. Coupling approach

Within each time step, the equilibrium equation (Eq. (29)), the
slurry flow equation (Eq. (28)) and the proppant transport equation
(Eq. (6)) must all be solved. Firstly, this nonlinear coupled system (Eq.
(29) and (28)) is solved simultaneously using the Newton-Raphson
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iterative method. Secondly, the proppant transport equation (Eq. (6)) is
solved at the end of each time step as follows. The proppant con-
centration obtained from the last time step (donated by clast) is applied
to calculate the effective viscosity μ c( )last according to Eq. (9). After
some manipulations, Eq. (6) can be rewritten as

∂
∂

+ ∂
∂

=c
t

χ c
s

0 (30)

in which = − ∂
∂χ w

μ c
p
s24 ( )last

2
. Thus, this linear convection equation can be

solved by the upwind difference scheme (Hirsch, 1990), that is

= − ++ + − − +c c Δt χ c χ c( )͠i
n

i
n

s s
1͠ ͠ (31)

Where n͠ and Δt͠ represent step number and step size of the upwind
scheme, respectively, and =+χ χmax( , 0), =−χ χmin( , 0),

= −+
+c c c Δs( )/s i
n

i
n

1 , = −−
−c c c Δs( )/s i

n
i
n

1 . The above scheme is stable if
≤χ 1Δt

Δs
͠

can be satisfied. In this study, a second-order correction with a
limiter is applied to reduce the numerical diffusion and dispersion
(Adachi et al., 2007; Hirsch, 1990).

2.6. Width and conductivity of propped fracture considering proppant
deformation, embedment and crushing

The statuses of proppant inside a fracture at different phases of
fracturing are schematically illustrated in Fig. 2. In reality, the proppant
has widely varying diameters. For example, a proppant sized to 30/50
mesh has proppant grains sized from 595 to 297 microns in diameter.
However, it is quite difficult to establish mathematical models con-
sidering proppant with varying diameters. Hence, in this study, it is
assumed that the proppant grains have the same diameter Dp. In ad-
dition, after the hydraulic pressure is released, proppant grains are
assumed to be arranged in the hexagonal close packing, as shown in
Fig. 2b. When the closure stress is equal to zero, the width of propped
fracture w s( )p

o for any point s along the propped fracture can be de-
termined by =w s w s c s η( ) ( ) ( )/p

o
o , where wo(s) is the fracture width at

point s before the fracture starts to close, as shown in Fig. 2a, and η
represents the packing density (Steinhaus, 1999) and equals 0.74 for
the hexagonal close packing pattern.

Afterwards, the fracture width will decrease from wp
o to wp due to

the deformation and embedment of proppant in the presence of in-situ
stress acting on the faces of propped fracture. Recently, an analytical
model based on the Hertzian contact theory (Johnson, 1985) to calcu-
late wp by considering proppant deformation and embedment has been
derived by Li et al. (2016). In this model, the spacing between the
particles is assumed to be a small value and the contact of particles in
the transverse fracture direction has not been considered. The de-
formation of half-space under proppant grain i due to the force on
proppant grain i has been considered. However, the deformation of
half-space under proppant grain i due to the force on proppant grain j
has not been considered, i.e., the mechanical interaction (Hopkins,
2000; Kamali and Pournik, 2016) has not been taken into account. It

should be noted that this simplification may result in overestimation of
the normal stiffness of the propped fracture (Hopkins, 2000; Kamali and
Pournik, 2016). According to this model, wp can be calculated by:
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In the above equations, n1 is the number of proppant layers and ceil
(x) is a ceiling function (ceil(x) = |x|+1); pclosure is the closure stress (or
closure pressure); Ep and νp are elastic modulus and Poisson's ratio of
the proppant, respectively; E and ν are elastic modulus and Poisson's
ratio of the formation, respectively.

Li et al. (2016) also derived the permeability of the propped fracture
according to the Carman-Kozeny equation, i.e., =k ϕr

τ8

2

2 , where ϕ, τ, and
r represent fracture porosity, pore tortuosity and pore-throat radius,
respectively (Nooruddin and Hossain, 2012). The resultant perme-
ability equation can be written as (detailed derivation is referred to Li
et al. (2016)):
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In Eq. (35), N represents the number of proppant. Then, the con-
ductivity of propped fracture can be obtained by combing Eqs. (32) and
(34), that is =C kwf p. It should be noted that for the closed portion of
the fracture where no proppant exists (as shown in Fig. 3), the fracture
permeability is assumed to be zero as it is much smaller compared to
the propped portion. Finally, the average conductivity of a fracture can
be written as

∫
=C

C s ds
l

( )
F

s
f0

tip

(36)

where l represents the length of the fracture.
The crushing of proppant plays a critical role in conductivity

Fig. 2. (a) Illustration of proppant inside a fracture at the end of the pumping and before the fracture is propped. (b) Illustration of multilayer-packed proppant after
the fracture is propped and under no closure stress.
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damage (Wang, 2016; Seales et al., 2017) and it must be considered in
the numerical model. Due to the fact that the proppant grains are
usually treated as a brittle material and the failure is a sudden process
rather than a gradual plastic deformation process (Zhang et al., 1990;
Ouwerkerk, 1991), plastic deformation has not been considered in this
study. It is assumed that the grains failure starts when the maximum
tensile stress reaches the tensile strength of the grain (Johnson et al.,
1973). For the contact between two proppant grains under the action of
force F ( =F D p 3 /2p closure

2 (Li et al., 2016)), the stress components are
all compressive except the radial stress at the edge and outside the
contact circle. The distribution of the radial stress near the contact
circle can be written as (Johnson, 1985):
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where a is the radius of the contact circle and
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pm is the maximum contact pressure at the center of the contact and

=p F
πa
3

2m 2 (39)

Then, the maximum value of the radial stress, which is also the
maximum tensile stress, can be written as
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−

=σ σ
p ν(1 2 )

3t r r a
m p

(40)

Finally, after combing Eqs. (38)–(40) we can obtain
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Once the proppant starts to fail, it still remains a big challenge to
mathematically describe the geometric changes and resulting changes
of fracture width and conductivity due to the extreme complexity of this
problem. The damage theory has been widely used to describe the
failure of granular materials (Gambarotta and Lagomarsino, 1993;

Sokolinsky et al., 2011). Therefore, a damage model is proposed in this
study:
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where ω is damage factor ( ≤ ≤ω0 1), σt
f is the tensile stress when the

grains start to fail, σt
u is tensile stress when the grains are totally cracked

and is taken as 1000MPa in this study. Then, the permeability k can be
replaced by = −k ω k(1 )D (Seales et al., 2017).

It is well known that the conductivity of larger proppants falls below
the conductivity of smaller proppants with increasing closure stress. In
other words, there is significant size effect on the strength of proppant
grains (Huang et al., 2014). However, if we consider the case of a
homogeneous spheroidal grain under the action of diametral com-
pression, as given in Eq. (41), it can be clearly seen that the bearing
capacity is independent of the grain size. Obviously, this conclusion is
not in accordance with the practical experience. In this paper, using the
Griffith and Weibull theories, we proposed a theoretical approach al-
lowing to consider the size effect on the strength of proppant grains.
According to the Griffith theory (Griffith, 1921), the failure phenomena
of grains can be explained by the presence and propagation of micro-
cracks, i.e., the Griffith cracks. The Griffith cracks are randomly dis-
tributed with a certain density and the number of Griffith cracks in-
creases with the grain volume. In addition, Weibull (1939) found a
relationship between the strength of a specimen and its volume:
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σ σ V
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f
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where σt
o is the strength of a specimen of unit volume Vo; m is the

Weibull's modulus and is taken as 11 in this paper (Tsoungui et al.,
1999), and if m → ∞, then the grain tends to be a perfect homogeneous
material and its strength is independent of its volume.

2.7. Iteration scheme to determine the width of propped fracture

After the pumping is finished, the fluid pressure will gradually drop
and finally vanish. Thus, the original equilibrium equation (Eq. (20))
can be rewritten as

− =KU F 0ext (44)

Since K is relevant to the unknown U, the above equation is non-
linear and should also be solved iteratively. Similarly, the Newton-
Raphson iteration method is adopted to solve the nonlinear problem.
The residual vector Ri of the Newton-Raphson method at the iteration
step i can be written as

= −R K U Fi i i ext (45)

and the associated Jacobian matrix reads

=J Ki (46)

Therefore, U can be updated at each iteration step by

= −+U U R
J

i i
i

i
1

(47)

The iteration converges when the residual vector Ri is small enough
in comparison with the initial residual vector R0

= ≤η εR R/propped
i

tol
propped0 (48)

where the tolerance εtol
propped is taken as 10−10 in this study.

The normal distance between two fracture surfaces is determined
according to the constitutive relation between Pclosure and wp.
Meanwhile, the relative movement between the two surfaces in the
tangential direction is always free. Thus, the matrix Dpropped in Eq. (22)
can be written as

Fig. 3. Illustration of the propped portion with proppant and the closed portion
without proppant of a fracture in a symmetry model.
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and evaluated by numerical differentiation. Because Eq. (32) is a
transcendental equation without analytical solution, the Secant itera-
tion method (Press et al., 1992) is utilized to calculate Pclosure for a given
wp.

It should be remarked that for the closed portion of the fracture
where no proppant exists, as shown in Fig. 3, the contact status between
frictional fracture surfaces under the action closure stress needs to be
determined. This can be easily achieved by replacing Dpropped with
Dcontact, which is expressed as follows within the framework of plasticity
theory of friction (Khoei et al., 2015; Khoei and Nikbakht, 2007):
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k k
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n n I n n

( ) ( ) for stick
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N Γ Γ f T Γ Γ

PF PF PF PF

PF PF PF PF (50)

where kN and kT are the penalty parameters in the normal and tan-
gential directions, respectively; μf is the Coulomb friction coefficient,
and I is the identity tensor. In this study, kN, kT are both taken as
104 GPa/m andμf is taken as 0.2.

3. Verification

Verification of the fluid-solid coupling model against analytical
solutions and proppant transport in a single fracture have been per-
formed in our previous study (Shi et al., 2016). In order to verify the
proposed XFEM-based numerical method for determining the con-
ductivity of propped fracture under the influence of closure stress, four
verification examples are presented and compared with the experi-
mental results (Wen et al., 2007; Seales et al., 2017). Parameters of the
four cases are listed in Table 1. The plane strain model of these ver-
ification examples is illustrated in Fig. 4. The model is meshed into 400
four-node quadrilateral elements of size 0.5 m×0.5m.

The simulation results and comparisons with experimental data are
presented in Figs. 5–7. It can be found that the proposed model is able
to predict satisfactory fracture conductivities which are nonlinearly
related to the applied closure stresses. It should be noted that in Fig. 5
the simulated conductivities are somewhat less than the experimental
results. One possible reason is that the mechanical interaction
(Hopkins, 2000; Kamali and Pournik, 2016) has not been taken into
account in the proposed model. It can also be concluded from Figs. 6
and 7 that proppant crushing plays a critical role in conductivity da-
mage. In other words, the calculated conductivity is much higher than
the experimental data if proppant crushing has not been properly
considered. In addition, from the perspective of numerical computa-
tion, it is found that 7 to 11 Newton-Raphson iterations are required to
reach convergence for a given closure stress, and 4 to 6 Secant itera-
tions are performed in each Newton-Raphson iteration.

4. Results and discussion

Based on the numerical model presented above, we set up and
analyze a base case and then conduct the sensitivity studies to in-
vestigate the influence of several factors on fracture conductivity. All
simulations share the same symmetrical model as shown in Fig. 8. The

left edge of the model is fixed in x direction and the bottom-left corner
is fixed in both x and y directions. The initial hydro-fracture is posi-
tioned on the left edge of the model. The model is meshed into 2220
four-node quadrilateral elements and the size of elements around the

Table 1
Properties of formation and proppant of the verification examples.

Parameter Unit Case 1 (Wen et al., 2007) Case 2 (Wen et al., 2007) Case 3 (Seales et al., 2017) Case 4 (Seales et al., 2017)

Elastic modulus of formation E GPa 12.76 12.76 20 20
Poisson's ratio of formation ν − 0.32 0.32 0.25 0.25
Elastic modulus of proppant Ep GPa 60 60 80 110
Poisson's ratio of proppant νp − 0.17 0.17 0.2 0.2
Average proppant size Dp mm 0.63 0.42 0.315 0.315
Strength of proppant σo t MPa 80 80 60 65

Fig. 4. Schematic diagram of a propped fracture of constant width inside the
formation.

Fig. 5. Comparisons of the numerical values of fracture conductivity and ex-
perimental data under different closure pressures for case 1 and case 2.
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hydro-fracture (colored in pink) is 0.5 m×0.5m.
For the base case, material properties, fracturing parameters and in-

situ stresses are listed in Table 2. The fracture propagation regime is
viscosity-dominated as Km equals 0.313 (Hu and Garagash, 2010). For
all simulations, the proppant is injected at a constant concentration
after pumping time reaches 20 s in addition to the periodic pumping of
proppant which will be presented in Section 4.7.

The widely used maximum circumferential tensile stress criterion
(Erdogan and Sih, 1963; Shi et al., 2016) is utilized to predict the
propagation of the hydro-fracture. This criterion assumes that the
propagation is along the direction normal to the maximum hoop tensile
stress. Besides, when the equivalent stress intensity factor Ke is greater
than or equal to the fracture toughness of the rock formation, the
fracture will propagate. The domain forms of the interaction integral
method (Moran and Shih, 1987) are employed to determine the stress
intensity factors KI and KII. The equivalent stress intensity factor Ke can
be written as

= ⎛
⎝

− ⎞
⎠

K θ K θ K θcos
2

cos
2

3
2

sine I
II2

(51)

where θ is the fracture propagation angle in the local fracture tip co-
ordinate system and can be determined (Stone and Babuška, 1998) by
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The initial half-length of the hydro-fracture is 1.5m. A uniform
pressure of 3.6 MPa, which is the theoretical fluid pressure (Hu and
Garagash, 2010) at the pumping point, is taken as the initial guess for
the first time step of the Newton-Raphson iteration. For the subsequent
time steps, the pressure solution obtained from the previous time step is
chosen as the initial estimate. Simulations continue until the fracture
length reaches 50.5 m.

The uncertainty parameters of the sensitivity studies include prop-
pant size, elastic modulus of proppant, elastic modulus of formation,
Poisson's ratio of proppant, Poisson's ratio of formation, pumping rate
of slurry, proppant concentration, and pumping strategy of proppant.
As the selected ranges of uncertainty parameters are critical to a sen-
sitivity analysis, wide ranges covering a large variety of scenarios
possibly encountered in practice are considered in this study and are
listed in Table 3.

Fig. 6. Comparisons of the numerical values (with and without crushing) of
normalized fracture conductivity and experimental data under different closure
pressures for case 3.

Fig. 7. Comparisons of the numerical values (with and without crushing) of
normalized fracture conductivity and experimental data under different closure
pressures for case 4.

Fig. 8. Geometry and finite element mesh of symmetrical hydraulic fracture
propagation model.

Table 2
Material properties, fracturing parameters and in-situ stresses of the base case.

Parameter Unit Value

Elastic modulus of formation E GPa 20.0
Poisson's ratio of formation ν − 0.2
Fracture toughness of formation KIC MPa·m1/2 1.0
Elastic modulus of proppant Ep GPa 20.0
Poisson's ratio of proppant νp − 0.2
Proppant size Dp mm 0.6
Pumping rate of slurry Qinj m2/s 0.001
Pumping concentration of proppant cinj − 0.3
Fluid viscosity μ Pa·s 0.1
In-situ stress in x direction σH MPa 100
In-situ stress in y direction σh MPa 30
Strength of proppant σo t MPa 50
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4.1. Results of the base case

Simulation results of the base case are presented in Fig. 9. Specifi-
cally, the fracture width at the pumping point after the pumping is
finished is 5.8 mm. Then, after the hydraulic pressure is relieved and
under the action of closure stress, the final width of the propped frac-
ture at the pumping point drops to 2.2 mm. In addition, the con-
ductivity at the pumping point and the average conductivity of the
propped fracture are 9.31 μm2 cm and 7.05 μm2 cm, respectively.

4.2. Effect of proppant size

The optimization of proppant size is very important to achieve the
desired well productivity. Proppant grains with average diameters
ranging from 0.1mm to 2.0 mm have been studied. Results are shown
in Fig. 10. It can be seen that the conductivity increases and then de-
creases as Dp increases. In general, it is known that larger proppant
grains result in larger fracture conductivity (Cooke, 1975; Lacy et al.,
1997; Fredd et al., 2001). This is because the permeability of the
propped fracture is proportional to the square of the pore-throat radius
which is directly related to the proppant size (see Li et al., 2016 for
more details). However, this positive trend of conductivity induced by
increasing proppant size is counteracted by the negative trend induced
by the following two major factors: (1) the size effect on the strength of
proppant grains, i.e., the tensile strength decreases as grain size in-
creases; and (2) large proppant is difficult to be transported to the near-
tip region of the fracture. Under the combined effect of these three
factors, the average conductivity is presented as a single-peak curve

with the peak appearing at 1.21mm, as shown in Fig. 10.

4.3. Effects of elastic moduli of proppant and formation

Fig. 11 presents the effects of elastic modulus of proppant Ep ranging
from 5 GPa to 80 GPa. It can be observed that the fracture conductivity
increases significantly when Ep is relatively small and then tends to be a
constant value as Ep continues to increase. From the perspective of
mathematical model, the reason for the decreasing impact of elastic
modulus on the conductivity at higher elastic modulus values is the
complex non-linear relationship between the conductivity and the
elastic modulus, which can be seen from Eq. (32) and Eq. (34). Simply
speaking, the conductivity is not proportional to the elastic modulus. In
addition, the conductivity of the propped fracture is still a finite value
even the proppant has an infinite value of elastic modulus (i.e., treat the
proppant grain as a rigid body). Therefore, the conductivity of the
propped fracture should approach a constant value with increasing
elastic modulus of proppant.

The range of fracture conductivity is 5.9 μm2 cm to 7.47 μm2 cm.
The effect of elastic modulus of formation E on fracture conductivity is
also shown. A similar conclusion can be drawn. However, the range of
fracture conductivity, which is 6.9 μm2 cm to 7.06 μm2 cm, is much

Table 3
Uncertainty parameters used in sensitivity studies.

Parameter Base case Minimum Maximum Increment Unit

Proppant size Dp 0.6 0.1 2.0 0.1 mm
Elastic modulus of

proppant Ep
20 5 80 5 GPa

Elastic modulus of
formation E

20 5 80 5 GPa

Poisson's ratio of
proppant νp

0.2 0.1 0.3 0.05 −

Poisson's ratio of
formation ν

0.2 0.1 0.3 0.05 −

Pumping rate of slurry
Qinj

0.001 0.0005 0.005 0.0005 m2/s

Pumping concentration
of proppant cinj

0.3 0.05 0.5 0.05 −

Fig. 9. Simulation results of the base case including fracture width after the
pumping is finished wo, width of the propped fracture under in-situ stress wp,
and fracture conductivity Cf.

Fig. 10. Effect of proppant size on the average conductivity of propped frac-
ture.

Fig. 11. Effects of elastic moduli of proppant and formation on the average
conductivity of propped fracture.
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narrower than that obtained by changing Ep, indicating that Ep is much
more critical than E in the calculation of fracture conductivity.

4.4. Effects of Poisson's ratios of proppant and formation

When calculating the deformation of particles along the normal
direction of the fracture surface, the Poisson's ratios of proppant and
formation are required parameters and must be considered in the
mathematical model when using the Hertzian contact theory.
Therefore, it is of significance to study the effect of Poisson's ratios
according to the proposed mathematical model.

Fig. 12 presents the effects of Poisson's ratios of proppant (νp) and
formation (ν) ranging from 0.1 to 0.3. It can be observed that the
fracture conductivity increases linearly with increasing νp. However,
fracture conductivity keeps unchanged with increasing ν, indicating
that the Poisson's ratio of formation has no effect on fracture con-
ductivity according to the proposed mathematical model.

4.5. Effect of pumping rate of slurry

Fig. 13 shows the effect of pumping rate of slurry Qinj on fracture
conductivity. The range of investigated Qinj is 0.0005m2/s to 0.005m2/
s. It can be seen that the average conductivity increases as Qinj increases
but the increasing rate slows down gradually. It should be noted that
although larger pumping rate of slurry leads to larger fracture con-
ductivity, sometimes, the pumping rate is limited by some other factors,
such as wellbore profile, perforation area and fracturing equipment
(Economides and Martin, 2007).

Fig. 12. Effects of Poisson's ratios of proppant and formation on the average
conductivity of propped fracture.

Fig. 13. Effect of pumping rate of slurry on the average conductivity of propped
fracture.

Fig. 14. Effect of proppant concentration on the average conductivity of
propped fracture.

Fig. 15. Curves of time-dependent proppant volumetric concentration at the
pumping point of continuous pumping and periodic pumping.

Fig. 16. Tornado diagram of sensitivity studies.
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4.6. Effect of proppant volumetric concentration

The effect of the proppant volumetric concentration at the pumping
point (cinj) on fracture conductivity is illustrated in Fig. 14. It can be
found that the average conductivity increases with increasing cinj in a
nonlinear manner. This is an obvious consequence as more proppant is
able to be injected into the fracture when cinj increases. The simulation
results are in accordance with the widely accepted conclusion which
says that higher proppant concentrations within a proppant pack are
proportional to increased fracture width and therefore relatively pro-
portional to increasing fracture conductivity (Economides and Martin,
2007).

4.7. Effect of pumping strategy of proppant

Recently, some heterogeneous proppant placement techniques such
as the channel fracturing technique, where the proppant is inter-
mittently pumped, have been developed and practiced (Barasia and
Pankaj, 2014). In the base case, the proppant is injected at a constant
volumetric concentration of 0.3. In the case of this section, the proppant
is periodically injected at a higher volumetric concentration of 0.4. For
both pumping strategies, the amounts of proppant are kept the same.
For the periodic pumping, the proppant is injected for 75 s within a
period of 100 s, as shown in Fig. 15. Simulation results show that the
average conductivity increases by 21% from 7.05 μm2 cm to
8.51 μm2 cm compared to the base case. It is demonstrated that the
fracture conductivity may be improved by applying periodic pumping
of proppant.

Finally, the impacts of the above uncertainty parameters on the final
fracture conductivity are summarized in a Tornado diagram shown in
Fig. 16 based on the ranges investigated. It is shown that the most
sensitive parameter is proppant size, followed by volumetric con-
centration of proppant, pumping rate of the slurry, and elastic modulus
of proppant. The pumping strategy of proppant is less sensitive. The
elastic modulus of formation and Poisson's ratio of proppant are neg-
ligible compared to other factors. The Poisson's ratio of formation has
no effect on fracture conductivity.

5. Conclusions

We presented a coupled numerical model to calculate the con-
ductivity of propped fracture considering proppant transport, place-
ment, deformation, embedment, and crushing in the context of the
extended finite element method. We calculated the average con-
ductivity of propped fracture according to fracture width which is re-
lated to the closure stress by a nonlinear constitutive relation. We took
into account the proppant crushing process by introducing a damage
model. We considered the size effect of proppant grains on the crushing
strength using the Griffith and Weibull theories. Then, we performed
sensitivity studies on some parameters varied over wide ranges based
on the proposed model. The following conclusions can be drawn from
this study:

(1) The verification examples and comparisons with experimental data
indicate that proppant crushing plays a critical role in conductivity
damage and must be properly considered in the numerical model.

(2) The sensitivity study shows that the most sensitive factor is the
proppant size and fracture conductivity increases firstly and then
decreases with increasing proppant size. There are two main rea-
sons for this: first, the tensile strength decreases as grain size in-
creases, i.e., the size effect on the strength of proppant grains;
second, the large proppant is not able to pass the narrow portion of
the hydro-fracture, such as the near-tip region.

(3) In addition to proppant size, the most sensitive factor is proppant
concentration, followed by pumping rate of slurry, elastic modulus
of proppant, and pumping strategy of proppant. Furthermore, the

effects of elastic modulus of formation and Poisson's ratios of
proppant and formation are negligible.

(4) Periodic pumping of proppant leads to higher conductivity than
continuous pumping while keeping the amount of injected prop-
pant constant.

By systematically considering a series of complex physical processes
and a variety of factors, and benefiting from the advantages of the
extended finite element method, the proposed numerical model is able
to satisfactorily and effectively predict the conductivity of propped
fracture. The proposed model is a useful tool for proppant selection for
given formation conditions in hydraulic fracturing design.
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