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ABSTRACT

Field data suggests that carbonate reservoirs contain abundant natural fractures and cavities. The propagation
mechanisms of hydraulic fractures in fracture-cavity reservoirs are different from conventional reservoirs on
account of the stress concentration surrounding cavities. In this paper, we develop a fully coupled numerical model
using the extended finite element method (XFEM) to investigate the behaviors and propagation mechanisms of
hydraulic fractures in fracture-cavity reservoirs. Simulation results show that a higher lateral stress coefficient can
enhance the influence of the natural cavity, causing amore curved fracture path. However, lower confining stress or
smaller in-situ stress difference can reduce this influence, and thus contributes to the penetration of the hydraulic
fracture towards the cavity. Higher fluid viscosity and high fluid pumping rate are both able to attenuate the effect
of the cavity. The frictional natural fracture connected to the cavity can significantly change the stress distribution
around the cavity, thus dramatically deviates the hydraulic fracture from its original propagation direction. It is
also found that the natural cavity existing between two adjacent fracturing stages will significantly influence the
stress distribution between fractures and is more likely to result in irregular propagation paths compared to the
case without a cavity.
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1 Introduction

Carbonate reservoirs, which contain naturally-formed fractures and caves, widely exist in the
world and have huge potential for exploitation [1,2]. These caves of different shapes and sizes
provide storage space for oil and gas, and fractures are the potential flow paths for hydrocarbon
recovery. As a successful stimulation method, the aim of the hydraulic fracturing technique is to
connect wellbores and caves through hydraulic fractures as well as natural fractures. In order to
achieve maximum oil or gas extraction, it is of great significance to perform the study on the
propagation mechanisms of hydraulic fractures in fracture-cavity reservoirs.
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During the past decades, based on different numerical approaches like the finite element
method (FEM) [3,4], the displacement discontinues method (DDM) [5], the phase field method [6,
7], the distinct element method (DEM) [8], the extended finite element method (XFEM) [9–12],
and the proper generalized decomposition method (PGD) [13], a variety of numerical models have
been established and applied by researchers to study hydraulic fracture propagation in considera-
tion of different kinds of influence factors. Among these studies, Schrefler et al. [3] proposed an
adaptive refinement technique to simulate hydraulic fracturing problems based on the generalized
finite element formulation. Song et al. [4] performed a series of numerical simulations and exam-
ined the influence of some key factors on hydraulic fracturing propagation using RFPA2D-Flow.
Zhou et al. [7] proposed a phase field model for fluid-driven dynamic crack propagation simulation
in the poroelastic media. Wang et al. [13] numerically studied the hydraulic fracturing problems
via the PGD method. Recently, the interaction mechanisms between hydraulic fractures (HFs) and
pre-existing natural fractures (NFs) in reservoirs have increased markedly [11,14,15]. When an HF
meets an NF, it can be deflected or arrested by the NF, active the NF and branch along one or
two sides of the NF, or even bypass the NF [14], leading to very complicated patterns of HF-NF
interactions. Readers are referred to [14,15] for a comprehensive review of this topic. However,
despite these efforts, a systematic study of mechanisms and factors that govern the propagation
behavior of hydraulic fractures around natural cavities has been seldomly reported in the literature.
Hence, an attempt is made in this study to present a comprehensive investigation of the interaction
mechanism of hydraulic fracture and naturally-formed caves and fractures by establishing a reliable
numerical model.

The difference in the propagation mechanisms of hydraulic fractures between fracture-cavity
reservoirs and conventional reservoirs is mainly caused by the stress concentration around cavities.
As shown in Fig. 1, the analytical solution of stress in the tangential direction, σθ , surrounding
the cavity of radius r can be written as [16]

σθ = σH
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)
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)
cos 2θ

]
, (1)

where λ= σh/σH denotes the lateral stress coefficient. From Eq. (1), it can be easily concluded that
if λ < 1/3, tensile stress zones exist at the left and right sides near the cavity, thus promoting the
propagation of a nearby hydraulic fracture towards the cavity located ahead of the fracture tip.
If 1/3< λ < 1/2, although the tensile stress zone disappears, σθ < σH can still be satisfied around
the left and right sides of the cavity, which is also favorable for hydraulic fracturing. However,
if λ > 1/2, the hydraulic fracture will be arrested or deflected from its original propagation
path due to the compressive stress concentration phenomenon. With this in mind, therefore, it
can be conjectured that once the cavities are considered in reservoirs, quite different physical
mechanisms and propagation-path scenarios of hydraulic fracturing can be obtained. For instance,
Liu et al. [6] investigated the effects of full-filled cavities on hydraulic fracturing based on the
phase field method. They found that the propagation paths are sensitive to Young’s modulus ratio
between rock formation and cavity, spatial location of the cavity as well as differential in-situ
stress. Likewise, Luo et al. [17] established a coupled seepage-free flow-mechanical model and
studied the influence of the fluid pressure inside a cavity as well as the perforation direction on
the hydraulic fracture propagation paths. It was found that higher fluid pressure in the cavity
is more likely to reduce fracture path deflection and the perforation direction has a profound
influence on the fracture propagation path. Cheng et al. [11] built a numerical model and studied
the influence of cavity location as well as the difference of in-situ stress on the propagation path
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of a hydraulic fracture. He et al. [18] proposed a coupled hydromechanical model and studied
the effects of existing pressurized cavities on the propagation of fluid-driven fracture. Besides,
a numerical simulator called FEMM-FracFlow was used by Wang et al. [19] to investigate the
behaviors of hydraulic fractures and found that fracture paths are closely related to the cavities,
pumping rate of fracturing fluid, and the in-situ stress level. In addition to hydraulic fracturing
technology, acid fracturing is one of the major measures of reservoir stimulation, especially for
carbonate reservoirs. Zhao et al. [20] established a numerical tool for acid fracturing simulation
and studied the mechanism of hydraulic fracture propagation in cases involving a single cavity
and a pre-existing natural fracture. Simulation results [21] suggest that a smaller approaching
angle of the hydraulic fracture towards the natural fracture and longer natural fracture benefit
the penetration of hydraulic fracture into the cavity. As another alternative, the explosive pulsed
fracturing technique is receiving more attention from researchers [21]. Wang et al. [22] developed
a numerical model to investigate the pulsed fracturing process in fracture-cavity reservoirs and
found that natural fracture can potentially guide the pulsed fracturing path under the action of
pulse pressure.

Figure 1: A cylindrical cavity of radius a under the action of biaxial stresses. Plane strain model.
Stress σH is acting in the horizontal direction, and stress σh is acting in the vertical direction.
r and θ represent polar coordinates

Although some works aiming at explaining the mechanisms of interaction among HF, NF,
and cavity have been done by researchers, it still lacks a systematic study and deeper understand-
ing of crucial factors that influence the hydraulic fracturing efficiency in fracture-cavity reservoirs.
On the other hand, existing studies mainly focus on simple geometrical configuration, and the
study of the influence of cavity on hydraulic fractures in a wellbore is not available in the
literature. In this study, the XFEM proposed by Belytschko et al. [23] is adopted to describe
the displacement field around fractures and cavities, the intersection between an HF and an NF,
and the penetration of a fracture into a cavity. Consequently, the tedious remeshing process can
be avoided after the propagation of fractures [10]. The fluid flow within fractures is described
by Reynold’s equation [9] which is discretized using the FEM. Afterward, the displacements of
all solid nodes including enriched nodes, and the pressure distribution of all fluid nodes along
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the hydro-fracture are obtained by solving the fully-coupled governing equations [10] using the
Newton–Raphson (N–R) method.

This paper is presented as follows. The description of the numerical model is given in
Section 2. Implementation and validation of the proposed numerical model are presented in
Section 3. Mechanisms and factors that govern the propagation behavior of hydraulic fractures
around natural cavities are systematically studied in Section 4. Major conclusions are summarized
in Section 5.

2 Description of the Numerical Model

A shown in Fig. 2, we consider the domain � with a hydraulic fracture �HF , a frictional [24]
natural fracture �NF , and a cavity inside. The boundary of the domain � is � with a normal
vector nΓ . � is fixed at boundary Γu and traction t is applied at boundary Γt. s represents the
coordinate system defined along the hydraulic fracture. The incompressible Newtonian fluid is
pumped at a rate of Qinj into �HF . To make the numerical model more tractable, the following
assumptions are made. The fracture growth process is treated as quasi-static [25]. The fluid lag
phenomenon [14] is ignored. Natural cavities usually exist in three forms, i.e., non-filled, partly-
filled, and fully-filled cavities [2]. Non-filled cavities are studied in this article. In addition, although
natural cavities are of quite irregular shapes, they are treated as regular circles or ellipses in this
article for the sake of modeling convenience.

Figure 2: Illustration of the hydraulic fracturing problem in the fracture-cavity reservoir

2.1 Governing Equations
According to the linear elastic assumption of rock formation, the governing equations for

quasi-static deformation can be written as [10]⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇ ·σ = 0 in Ω

σ · n= t on Γt

σ · nΓHF = pnΓHF on ΓHF

σ · nΓNF = tcont on ΓNF

, (2)
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where σ denotes the Cauchy stress tensor, tcont represents the traction vector caused by contact
behaviors between fracture surfaces.

The fluid flow along the hydraulic fracture can be described by Reynold’s equation [25]

∂w
∂t

− w3

12μ
∂

∂s

(
∂p
∂s

)
+ gL (s, t)−Qinjδ (s)= 0, (3)

where w, t, p, and μ represent fracture aperture, time, fluid pressure, and fluid viscosity, respec-
tively. The fracture aperture w can be calculated by w = [[u]] · nΓHF, where [[u]] denotes the
displacement jump across the fracture. The term gL represents the fluid leak-off from the hydraulic
fracture into the surrounding rock formation, which can be written as [9,26]

gL (s, t)= 2CL√
t− t0 (s)

, (4)

where CL is the fluid leak-off coefficient, and t0 (s) represents the time instant when fluid starts
to leak for a point s along the hydraulic fracture.

After introducing the trial function u(x, t) and test function δu(x, t), we can obtain the weak
form of Eq. (2):∫

Ω

δε : σdΩ+
∫

ΓHF

[[δu]] · pnΓHFdΓ +
∫

ΓNF

[[δu]] · tcontdΓ =
∫

Γt

δu · tdΓ . (5)

Besides, by introducing the test functionδp(s, t) and integrating by parts, the weak form of
Eq. (3) can be written as:∫

ΓHF

(
δp

∂w
∂t

+ w3

12μ
∂ (δp)

∂s
∂p
∂s

+ δpgL

)
dΓ − δp|s=0 Qinj = 0. (6)

Spatial and time discretization of Eqs. (5) and (6) can be found in our previous work [10].
Afterward, the solid–fluid coupling problem is governed by Eqs. (2) and (3) can be iteratively
solved by using the Newton-Raphson method [10].

2.2 Extended Finite Element Method
In this paper, we use the XFEM to describe the displacement field around fractures and

cavities. By simply introducing additional degrees of freedoms (DOFs), i.e., the enriched DOFs,
the remeshing and data mapping between old and new meshes can be avoided [27] and the demand
on mesh refinement around fracture tip can be greatly alleviated owing to the fracture tip enrich-
ment function, leading to a significant reduction of the problem complexity and computational
time. This is a substantial improvement for numerical simulation of problems containing strong
or weak discontinuities, especially for simulation cases where a large number of fractures and
caves are involved. Since its introduction in 1999 [23,27], the XFEM has been adopted by many
researchers to study various kinds of problems related to hydraulic fracturing. For problems where
the intersection of an HF and an NF, as well as the intersection of a fracture and a cavity, are



580 CMES, 2021, vol.127, no.2

considered, the displacement of a point x inside the domain � can be written as

u (x)=
∑
I∈Sall

NI (x)uI +
∑
I∈Sfrac

NI (x)H (x)aI +
∑

I∈Scavity
NI (x)C (x)bI

+
∑
I∈Stip

NI (x)
4∑
l=1

Fl (x) clI +
∑

I∈Sjunc
NI (x)J (x)dI +

∑
I∈Spen

NI (x)P (x) eI
, (7)

in which NI denotes the shape function of node I , Sall denotes the set of all nodes whose dis-
placement vector is denoted by uI . Sfrac, Scavity, Stip, Sjunc, and Spen are the set of enriched nodes
for Heaviside enrichment, cavity enrichment, tip enrichment, junction enrichment, and penetration
enrichment, respectively, and their corresponding vectors of enriched DOFs are denoted by aI ,
bI , cI , dI and eI , respectively. Heaviside enrichment function H (x) equals 1 on one side of the
fracture and −1 on the other side. The cavity enrichment function C (x) takes the value of 0 if
the point x lies inside the cavity and 1 if outside the cavity. The fracture tip enrichment function
Fl (x) is composed of four parts [27]

{Fl (r, θ)}4l=1 =
{√

r sin
θ

2
,
√
r cos

θ

2
,
√
r sin θ sin

θ

2
,
√
r sin θ cos

θ

2

}
, (8)

where (r, θ) represents the local polar co-ordinates defined at fracture tips [27]. As depicted in
Fig. 3, in addition to the Heaviside enrichment nodes, the junction enrichment nodes are necessary
to describe the intersection of two fractures. The T-shaped junction considered in this article,
J (x) takes different values of 1, −1, and 0 in different subdomains [10]. Besides the Heavi-
side enriched nodes and cavity enriched nodes, the penetration enriched nodes are presented to
describe the penetration of a fracture into the cavity, just as illustrated in Fig. 4. The penetration
enrichment function P (x) takes the following form

P (x)=
{
H (x) , if C (x)= 1
0, if C (x)= 0

, (9)

which indicates that P (x) equals 0 if x lies inside the cavity, and otherwise equals 1 or −1 in
accordance with the Heaviside enrichment function.

Figure 3: Depiction of the enriched nodes for a T-shaped junction formed by two fractures. The
fluid nodes are also shown. Nodes whose support domain contains two intersected fractures
should be selected as junction enriched nodes
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2.3 Frictional Behaviors of Natural Fractures
Frictional and cemented fractures are two common types of natural fractures in reser-

voirs [24]. In this article, the frictional natural fractures are considered due to their stronger influ-
ence on the creation of the fracture network in comparison with cemented natural fractures [24].
Thus, to avoid embedding of fracture surfaces under the effect of compressive stress, the frictional
behaviors of natural fractures must be considered. The no-embedding conditions of fracture
surfaces can be expressed as [28]⎧⎪⎪⎪⎨⎪⎪⎪⎩
[[u]]N ≥ 0

tcontN ≤ 0

[[u]]N t
cont
N = 0

, (10)

where [[u]]N and tcontN represent the normal component of [[u]] and tcont, respectively. Based
on Coulomb’s friction law, the contact status can be determined according to the following
expression [29]

Ff
(
tcont,w

)= ∥∥tcontT

∥∥− tanφf
∥∥tcontN

∥∥− cf , (11)

where tcontT represents the tangential component of tcont, φf represents the friction angle of the
fracture surface, and cf is the cohesive strength between fracture surfaces. If Ff < 0, then the
fracture surfaces are in a bonding state. If Ff = 0, then the fracture surfaces are in a slipping state.

Figure 4: Depiction of the enriched nodes for penetration of a fracture into a cavity. The fluid
nodes are also shown. Nodes whose support domain contains both the boundary of the cavity
and the fracture should be selected as penetration enriched nodes

In this article, the penalty function method together with the Newton–Raphson method [10]
is adopted to consider the frictional force and the contact status in the simulation. For each
Newton–Raphson iteration Step i, the following linear system is solved[
Kuu Kua
Kau Kaa

]i {dũi
dãi

}
=−

{
�1
�2

}i
, (12)
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and the global conventional DOFs vector ũ and enriched DOFs vector ã are updated according to{̃
ui+1

ãi+1

}
=
{̃
ui

ãi

}
+
{
dũi

dãi

}
(13)

until the following convergence criterion is satisfied∥∥∥(dũi)T ,
(
dãi
)T∥∥∥∥∥∥(̃ui)T ,

(̃
ai
)T∥∥∥ ≤ 10−6. (14)

In Eq. (12), Kuu, Kua, Kau, Kaa, �1 and �2 take the following forms, respectively⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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∫
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σdΩ− ∫Γt (N std
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∫
Ω

(
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σdΩ− ∫Γt (Nenr)T tdΓ +

∫
Γc

(
N std

)T
tcontdΓ︸ ︷︷ ︸

Fcontact

(15)

In Eq. (15), N is the matrix of shape function, B is the matrix of shape function derivatives,
D is the stress-strain matrix, and Dcont is related to contact status of fractures and can be written
as [10]

Dcont =
{
kN
(
nΓNF ⊗ nΓNF

)+ kT
(
mΓNF ⊗mΓNF

)
for bonding state

kN
(
nΓNF ⊗ nΓFF

)+ tanφf kT
(
mΓNF ⊗ nΓNF

)
, slipping state

(16)

where kN and kT are the penalty parameters in the normal and tangential directions, respectively,
and mΓNF is the unit vector in the tangential direction of the natural frictional fracture. In
Eq. (15), the frictional force between fracture surfaces is considered by the last term Fcontact of �2.

2.4 Fracture Propagation Criterion
The widely adopted maximum hoop-stress criterion [30] related to Mode-I (KI ) and Mode-II

(KII ) stress intensity factors (SIFs) is used to check whether and along which direction the fracture
will propagate

Ke = cos
α

2

(
KI cos2

α

2
− 3KII

2
sinα

)
, (17)
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where

α = 2arctan

⎛⎝ −2KII/KI

1+
√
1+ 8 (KII/KI)

2

⎞⎠ . (18)

If Ke exceeds the fracture toughness of reservoirs (KIC), the fracture will propagate and deflect
by the angle α compared to its original direction. The SIFs are calculated by using the interaction
integral approach [31]. When an HF meets a frictional NF, whether the HF will propagate along
the NF, cross the NF, or be arrested by the NF is determined using the extended Renshaw
and Pollard criterion [32]. Implementation details of this criterion can be found in our previous
article [24].

3 Model Implementation and Validation

The proposed numerical model is implemented in an in-house Fortran code called PhiPsi
(http://phipsi.top/): A general-purpose XFEM-based program. The level set method [33] is used to
describe fractures and cavities, and to track the growth of fractures. The compressed sparse row
(CSR) format is used to store global system matrices with optimized memory consumption. For
the simulation cases where frictional natural fractures are considered (Section 4.1.6), two types
of Newton–Raphson iteration loops are performed [10]. The outer loop solves the solid–fluid
coupling equations (Eqs. (2) and (3)), and the inner loop determines the contact status of natural
frictional fractures [10]. For each Newton–Raphson iteration step, an iterative solver called Lis [34]
is adopted to solve the linear system. The flowchart of the simulation algorithm [10] is shown
in Fig. 5.

The validation of the presented numerical model without considering cavities has been suf-
ficiently conducted in our previous articles [9,10,24,35]. In this section, the propagation of an
initial fracture towards a cavity in a panel under the action of tensile load is studied to verify
the capacity of the proposed model for predicting interactions between fractures and cavities. As
illustrated in Fig. 6, the bottom of a plane stress panel is fixed and the top of the panel is
subjected to tensile stress σ . The geometric parameters H, h1, h2, l, b1, b2, and a are taken as 3.0,
1.5, 0.1, 1.2, 0.7, and 0.2 m, respectively. Besides, the values of Young’s modulus and Poisson’s
ratio are given as 30 GPa and 0.2, respectively. The tensile stress σ is 5 KPa. The discretized model
consists of 3,400 quadrilateral elements in total. The fracture propagates by an increment of 0.045
m and penetrates the cavity after 15 propagation steps. The resulting vertical displacement field
of the panel and the enriched nodes are presented in Fig. 7 where six penetration enriched nodes
can be seen. This problem has been studied by Nguyen et al. [36] using the extended meshfree
Galerkin method. The comparison of the calculated propagation path with [36] is visualized in
Fig. 8. As expected, the propagation path predicted by the proposed method is well consistent
with that predicted by other numerical method, indicating that the interactions between fracture
and cavity can be well captured using the proposed model.

The simulation of a frictional natural fracture of length 10 m in a plane strain plate under
the action of compressive stress will be performed to verify the frictional model presented in
Section 2.3. As shown in Fig. 9a fracture at 50◦ with respect to x-direction is placed at the center
of the model. The bottom edge of the plate is fixed in vertical direction and the left bottom
corner is fixed in both vertical and horizontal directions. The material parameters E, υ of the
plate are 20 GPa and 0.2, respectively. The friction angle of the fracture surface and the cohesive
strength of the frictional fracture are π /10 and 0 MPa, respectively. kN and kT are taken as

http://phipsi.top/
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Figure 5: Flowchart of the simulation algorithm

Figure 6: Illustration of a panel that contains a fracture of initial length l and a cavity of radius a.
The bottom of the panel is fixed and the top of the panel is subjected to tensile stress σ . Plane
stress condition is assumed
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Figure 7: Vertical displacement field and enriched nodes of the last propagation step when the
fracture penetrates into the cavity. The deformation scale factor is 200

Figure 8: Comparison of the propagation path with the existing simulation result in the literature.
The black dots represent locations of the fracture tip during the propagation process. The black
circle represents the cavity

104 GPa/m. The applied stress σy on the top edge is 5 MPa. The discretized model consists
of 2,184 quadrilateral elements in total. As a comparison, this problem is also simulated using
the FEM (ANSYS) with 6,806 quadrilateral elements. The contours of the maximum principal
stress obtained from both the XFEM and the FEM solutions are shown in Fig. 10, from which
good agreements can be seen. In order to make a more accurate comparison, the relative shear
displacement (displacement in the tangential direction) between fracture surfaces obtained from
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both the XFEM and the FEM solutions are presented in Fig. 11. Again, good agreements can be
observed, which means that the proposed scheme to simulate contact behaviors [37] of frictional
fractures is accurate and reliable.

Figure 9: Illustration of a frictional natural fracture in a plane strain plate under the action of
compressive stress

Figure 10: Contours of maximum principal stress obtained from: (a) The XFEM solution and
(b) The FEM solution

Figure 11: Comparison of relative shear displacement between fracture surfaces
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4 Results and Discussion

4.1 Interactions between Hydraulic Fracture and Cavity
In this section, interactions between hydraulic fracture and cavity will be studied via a simple

model shown in Fig. 12. The influence of factors including in-situ stress, viscosity of the injected
fluid, pumping rate of the fluid, size of the cavity, shape of the cavity, and natural fracture will
be thoroughly investigated. The size of the model is 5 m× 10 m. The radius of the wellbore is
0.1 m. The length of the initial hydraulic fracture is 0.5 m. The radius of the cavity denoted by a
is set to 0.5 m. The vertical distance between the cavity and the fracture denoted by d is taken as
0.25 m (d = 0.5 a). The in-situ stresses σh and σH are 40 and 50 MPa, respectively. Thus, the lateral
stress coefficient λ equals 0.8, and the in-situ stress difference σD equals 10 MPa. The Young’s
modulus of the rock formation is E = 30 GPa, Poisson’s ratio is ν = 0.2, and fracture toughness
is KIC = 1.0 MPa ·m1/2. In addition, the viscosity of the injected fluid is μ= 0.01 Pa · s, the fluid
pumping rate is Qinj = 0.001 m2/s, and the fluid leak-off coefficient CL is taken as 10−5 m/s1/2.
The model is discretized into 5,618 quadrilateral elements. The hydraulic fracture propagates by
an increment of 0.15 m.

Figure 12: Geometry and boundary conditions of the model studied in Section 4.1. Plane strain
condition is assumed

The strongly deflected fracture propagation path and the stress distribution in y-direction are
shown in Fig. 13. It can be conjectured that if there is no cavity in this example, the hydraulic
fracture will propagate horizontally, i.e., in the direction orthogonal to the minimum principal
stress σh. However, as can be seen in Fig. 13, because of the strong stress concertation surrounding
the cavity, the hydraulic fracture propagates and bypasses the cavity. In the meantime, the injection
pressure at the wellbore required to drive the hydraulic fracturing process changes in a significantly
different manner from the scenario without the cavity, as shown in Fig. 14. Specifically, higher
fluid pressure is required at the beginning of the simulation because of the intense compressive
stress (in y-direction) at the left side of the cavity, and the required fluid pressure drops quickly
once the fracture grows into the area of low compressive stress above the cavity.



588 CMES, 2021, vol.127, no.2

Figure 13: Propagation path of the hydraulic fracture and the stress distribution in y-direction.
A positive value indicates compressive stress

Figure 14: Comparison of the injection pressure at the wellbore between the scenarios with and
without the cavity

4.1.1 Effects of In-situ Stress
The level of in-situ stress increases with the increase of the reservoir depth. On the other

hand, as discussed in the introduction section, the stress field surrounding the cavity is strongly
affected by the lateral stress coefficient λ. Hence, three different cases of in-situ stress are inves-
tigated in this section, as shown in Tab. 1. In Case 1, we choose a higher level of in-situ stress:
σh is 90 MPa and σH is 100 MPa. In Case 2, we choose a lower lateral stress coefficient: σh is 10
MPa and σH is 50 MPa. In Case 3, we choose the same lateral stress coefficient as Case 2 but
low in-situ stress difference: σh is 1 MPa and σH is 5 MPa. The simulated fracture propagation
paths are presented in Fig. 15. It can be found that both the lateral stress coefficient and the
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level of confining stress (or in-situ stress difference) have a strong influence on propagation paths.
Specifically speaking, a higher lateral stress coefficient can enhance the influence of the natural
cavity, causing a more curved fracture path. However, lower confining stress or smaller in-situ
stress difference can reduce the influence, and thus contributes to the penetration of the hydraulic
fracture towards the cavity.

Table 1: Different cases of in-situ stress

Parameters Base case Case 1 Case 2 Case 3

σh (MPa) 40 90 10 1
σH (MPa) 50 100 50 5
σD (MPa) 10 10 40 4
λ 0.8 0.9 0.2 0.2

Figure 15: Comparison of fracture propagation paths for three different cases of in-situ stress

4.1.2 Effects of Fluid Viscosity
Fluid viscosity is an important factor in hydraulic fracturing treatments. In this section, a fluid

of higher viscosity, 0.1 Pa · s, is injected into the wellbore. The simulation results are presented in
Fig. 16, from which it can be concluded that increasing the fluid viscosity can reduce the impact
of the cavity on the propagation path. The main reason for this is that the fluid pressure inside
the hydraulic fracture is higher for higher viscosity fluid [38], and the higher fluid pressure can
counteract the effect of the stress concertation caused by the cavity.

4.1.3 Effects of Fluid Pumping Rate
In this section, we investigate the effect of another key factor, the fluid pumping rate. Different

from the base simulation case, a higher pumping rate, 0.01 m2/s, is applied. The simulated
propagation path is also shown in Fig. 16 in which a smoother path can be seen compared to the
base case. Therefore, it can be concluded that a high fluid pumping rate is able to attenuate the
effect of the cavity, and thus benefits the propagation of the hydraulic fracture along its original
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direction. This phenomenon can be explained with the aid of the analytical solution of the KGD
model [38] which reveals that a higher pumping rate results in increased fluid pressure.

Figure 16: Comparison of fracture propagation paths for higher fluid viscosity and higher fluid
pumping rate with the base case

4.1.4 Effects of Cavity Size
Cavities with greatly different scales are widely distributed in fracture-cavity carbonate reser-

voirs [2]. In this section, we consider a smaller cavity of radius 0.3 m to study the effect of
cavity size. The simulated path is illustrated in Fig. 17. Just as expected, for a smaller cavity, its
effect is significantly weakened in comparison with the base case. Besides, it is worth noting that
the hydraulic fracture does not start to deflect until its tip comes into the zone near enough to
the cavity.

Figure 17: Comparison of fracture propagation paths for different sizes of cavities. The red dotted
circle represents the smaller cavity
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4.1.5 Effects of Cavity Shape
Natural cavities are of quite irregular shapes in fracture-cavity reservoirs [2]. In this section,

two elliptical cavities oriented in different directions (a horizontal elliptical cavity and a vertical
elliptical cavity) are studied to investigate the effect of cavity shape. The elliptical and circular
cavities have the same area. The eccentricity of both ellipses takes a value of

√
3/2. From Fig. 18

we can conclude that cavities of irregular shape have a stronger influence on the propagation
path than regular cavity and the horizontal elliptical cavity leads to a more twisty propagation
path. The stronger influence of the irregular cavity is caused by its higher stress concentrations
compared to the regular circle cavity.

Figure 18: Comparison of fracture propagation paths for cavities of different shapes

4.1.6 Effects of Natural Fractures
As shown in Fig. 19, the influence of natural fractures will be investigated through four

different cases. All of the natural fractures have the same length of 0.6 m and are positioned
along the normal direction of the cavity. The friction angle of the fracture surface and the
cohesive strength of the natural fracture are π /6 and 0.5 MPa, respectively. kN and kT are taken
as 104 GPa/m. In Figs. 19a and 19c, natural fractures are connected to the cavity; In Figs. 19b
and 19d, however, natural fractures are disconnected from the cavity with a small distance of
0.1 m. The angle of natural fractures in Cases (a) and (b) is set to π /4 with respect to the x-axes,
and in Cases (c) and (d) the angle is taken as −π /4. Simulation results are depicted in Figs. 20
and 21. It can be seen that the connectivity between existing natural fracture and cavity is a very
important factor that influences the propagation behavior of the hydraulic fracture. The connected
natural fracture dramatically deviates the hydraulic fracture from its original propagation direction.
However, for the disconnected natural fracture, the influence is limited since no sliding occurs
between the surfaces of the frictional fracture. In Case (d), a T-shaped junction is formed since
the hydraulic fracture is arrested by the natural fracture.
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Figure 19: Illustration of different cases of natural fracture around the cavity: (a) The natural
fracture with an angle of π /4 is disconnected from the cavity with a small distance; (b) The natural
fracture with an angle of π /4 is connected to the cavity; (c) The natural fracture with an angle
of −π /4 is disconnected from the cavity with a small distance; (d) The natural fracture with an
angle of −π /4 is connected to the cavity

Figure 20: Comparison of fracture propagation paths for cavities with connected and disconnected
natural fractures: Case (a) and Case (b)
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Figure 21: Comparison of fracture propagation paths for cavities with connected and disconnected
natural fractures: Case (c) and Case (d). In Case (d), the hydraulic fracture is arrested by the
natural fracture

4.2 Effects of Cavity on Hydraulic Fracturing in a Wellbore
This section is aimed to study the influence of cavity on hydraulic fracturing in a wellbore.

As illustrated in Fig. 22, for the sake of simplicity, only the first two stages (Stages 1 and 2)
are considered [9]. The size of the model is 100 m× 100 m. The spacing between stages is set
to 10 m. The length of the initial hydraulic fracture is 2.5 m. The radius of the cavity denoted
by a is set to 2.0 m. The vertical distance between the cavity and the fracture denoted by d is
taken as 3 m. The in-situ stresses σh and σH are 20 and 30 MPa (the lateral stress coefficient λ

equals 2/3), respectively. The Young’s modulus E is 30 GPa, Poisson’s ratio ν is 0.2, and fracture
toughness KIC of the rock formation equals 1.0 MPa ·m1/2. The viscosity μ and pumping rate
Qinj of the injected fluid is 0.01 Pa · s and 0.001 m2/s, respectively. The fluid leak-off coefficient

CL is taken as 10−5 m/s1/2. The proppant volume concentration of the injected fluid [39] is set
to 0.3. The distribution of proppant along the hydraulic fracture is obtained according to the
method proposed in our previous papers [9,35]. Then, the width of the propped fracture (wp)
can be determined by [9,35] wp=woc/η, where wo denotes the fracture opening before significant
pressure drops, c is the proppant volume concentration, and η = 0.74 is the proppant packing
density [40]. Afterwards, the penalty function method [9] is adopted to simulate the propped
fracture, namely, the Stage-1 hydro-fracture in this example. The model is discretized into 10,281
quadrilateral elements. The fractures of both stages propagate by an increment of 0.85 m for
each propagation step. It should be noted that simulation without a cavity is also performed for
comparison purposes.

The propagation paths of Stages 1 and 2 fractures for both cases without and with cavity
are illustrated in Fig. 23. The stress contours in x-direction for cases without and with cavity
are shown in Figs. 24a and 24b, respectively. These simulation results reveal that the existing
cavity between two sequential fracturing stages significantly influences the propagation paths.
For the case without the cavity, the Stage-2 hydraulic fracture curves away from the straight
Stage-1 fracture because of the stress shadow effects [41] caused by the propped Stage-1 fracture,
and the final paths are symmetrical about the wellbore. For the case with cavity, the Stage-1
fracture deviates leftward for both the upper and lower fracture tips, and the fracture path below



594 CMES, 2021, vol.127, no.2

the wellbore (y < 0) is more curved than that above the wellbore (y > 0). For the subsequent
Stage-2 fracture, its fracture tip above the wellbore (y> 0) grows away from the previous Stage-1
fracture; However, the fracture tip below the wellbore (y< 0) firstly grows towards and then away
from Stage-1 fracture. Besides the propagation paths, the stress fields are also quite distinct. The
maximum stress values in x-direction for the cases without and with cavity are 36.1 and 43.2 MPa,
respectively. For the case shown in Fig. 24b, both the maximum stress and the minimum stress in
x-direction occur around the cavity. The maximum stress occurs on the upper and lower sides of
the cavity, and the minimum stress occurs on the left and right sides of the cavity. The distinct
propagation paths shown in Fig. 23 are a direct result of the stress concentration caused by
the cavity.

Figure 22: Illustration of two-stages sequential hydraulic fracturing in a wellbore. The cavity is
placed between Stage-1 hydro-fracture and Stage-2 hydro-fracture with a vertical distance d to
the wellbore

Figure 23: Propagation paths of Stage-1 fracture and subsequent Stage-2 fracture within a zone
of size 50 m× 50 m for cases with and without cavity. The red solid lines represent propagation
paths for the case with cavity, and the dotted black lines represent propagation paths for the case
without the cavity
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Figure 24: Stress contours in x-direction within a zone of size 50 m × 50m: (a) For the case
without cavity; and (b) For the case with cavity. A positive value indicates compressive stress

5 Conclusions

In this paper, we established a fully-coupled numerical model to investigate the mechanisms
of hydraulic fractures in fracture-cavity reservoirs using the XFEM. The Heaviside, cavity, fracture
tip, T-shaped junction, and penetration enrichment functions are proposed to describe the dis-
placement jump across the fracture surface, displacement discontinuity over the cavity boundary,
singular displacement field near the fracture tip, intersection between the hydro-fracture and
the natural fracture, and penetration of a fracture into the cavity, respectively. Hence, tedious
remeshing can be avoided. The fluid flow within fractures is described by Reynold’s equation
which is discretized using the FEM. Afterwards, the fully-coupled governing equations are solved
iteratively using the Newton–Raphson method. After the validation of the proposed model in
Section 3, several cases are simulated to investigate the effects of factors such as in-situ stress,
fluid viscosity, fluid pumping rate, cavity size and shape, and natural fractures in Section 4.1.
Besides, the effects of a cavity on the sequential hydraulic fracturing in a wellbore are studied in
Section 4.2. According to the cases studied in this paper, the major conclusions can be reached
as follows:

(1) Both the lateral stress coefficient and the level of confining stress (or in-situ stress dif-
ference) have a strong influence on propagation paths of hydraulic fractures near cavities.
A higher lateral stress coefficient can enhance the influence of the natural cavity, causing
a more curved fracture path. However, lower confining stress or smaller in-situ stress
difference can reduce this influence, and thus contributes to the penetration of the hydraulic
fracture towards the cavity.

(2) The fluid viscosity and fluid pumping rate are two dominant factors on the propagation
path in hydraulic fracturing treatments when natural cavities are considered. Higher fluid
viscosity and high fluid pumping rate are both able to attenuate the effect of the cavity,
and thus benefit the propagation of the hydraulic fracture along its original direction.



596 CMES, 2021, vol.127, no.2

(3) The influence of a cavity depends not only on its size but also on its shape. Cavities of
irregular shape (ellipse, for example) have a stronger influence on the propagation path of
hydraulic fracture than regular circle cavity.

(4) The frictional natural fracture disconnected from the cavity, even with a very small distance
between the fracture tip and the cavity, has limited influence on the stress field around the
cavity. Nevertheless, a frictional natural fracture connected to the cavity can significantly
change the stress distribution around the cavity, thus dramatically deviates the hydraulic
fracture from its original propagation direction.

(5) Natural cavity existing between two adjacent fracturing stages will significantly influence
the stress distribution between fractures and is more likely to result in irregular propagation
paths compared to the case without cavity.
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